
UV Distributed Information Management
Summer semester 2023

Hands-On: MongoDB Replication in Action

This document contains the instructions to replicate the hands-on exerciseMongoDB Repli-
cation in Action.

Remark: This hands-on exercise has only been tested on Debian Linux (but probably works
in a similar manner on other systems).

Formaing Conventions Commands for the Linux command-line tool (terminal) and the
command-line tool of MongoDB (mongosh) written in TrueType font1. In addition, all com-
mands are in a box that species the used command-line tool at the beginning of the title
(separated by a dash –, i.e., terminal for Linux and mongosh for MongoDB). Listing 1 shows an
example command executed in the Linux terminal:

Listing 1: terminal – Show directories.

1 dbtutorial@database -tutorial:∼# ls -l

Contrarily, Listing 2 exemplies a command in MongoDB’s command-line tool, i.e., mongosh,
which stands for Mongo shell. It shows an example that executes the command show dbs on a
database named test:

Listing 2: mongosh – Show all databases.

1 test > show dbs

For more details on the terminals, we kindly refer to the description of Assignment 22.

1 Setup

In order to replicate this hands-on exercise, we need to simulate 𝑛 nodes that are part of a
cluster3. In our hands-on exercise, we assume 𝑛 = 3 nodes, but this should also work for 𝑛 > 3.
For simplicity, we create a cluster with three nodes locally on a single physical machine (i.e.,
our workstation, laptop, . . .). To this end, we need three directories, each of which represents
a node in our cluster4. When we start MongoDB in replication mode, we tell MongoDB to use
1TrueType font: https://en.wikipedia.org/wiki/TrueType
2Assignment 2: https://dbresearch.uni-salzburg.at/teaching/2023ss/dim/assignment2.pdf
3In practice, this is a set of machines that are connect via network, e.g., Ethernet.
4No need to establish connections, since they all reside on the same physical machine.

https://en.wikipedia.org/wiki/TrueType
https://dbresearch.uni-salzburg.at/teaching/2023ss/dim/assignment2.pdf

these three directories to store the data that resides on the respective node. Listing 3 shows
how to create these three directories inside the home directory of your user. Line 1 switches to
the home directory of your user and we list all directories that exist in this directory (line 2).
Then, we create a new directory named mongo and navigate into this newly created directory
(lines 4–5). Finally, we create three subdirectories named replica1, replica2, and replica3,
which mimic the data that is stored on node 1, node 2, and node 3, respectively (lines 7–9), and
we validate that these directories exist (line 11).

Listing 3: terminal – Set up 3 directories (in home) that represent 3 nodes in our cluster.

1 dbtutorial@database -tutorial:∼# cd /home/<username>
2 dbtutorial@database -tutorial:∼# ls -lah
3
4 dbtutorial@database -tutorial:∼# mkdir mongo
5 dbtutorial@database -tutorial:∼# cd mongo
6
7 dbtutorial@database -tutorial:∼# mkdir replica1
8 dbtutorial@database -tutorial:∼# mkdir replica2
9 dbtutorial@database -tutorial:∼# mkdir replica3
10
11 dbtutorial@database -tutorial:∼# ls -lah

Subsequently, we need six to seven terminal instances (i.e., processes) simultaneously: (i) Three
terminals (1–3) are used to simulate a cluster of three nodes (each terminal mimics a node in
our cluster). (ii) Three terminals (4–6) are used to connect to the nodes that run the respective
MongoDB daemons. (iii) Optionally, a separate terminal to import the data into our cluster
using the mongoimport command-line tool. Table 1 lists the names of the respective terminals
and a mapping from terminal to node or functionality.

Terminal Node / Functionality
node N1 Runs the rst mongod instance on port 42000 in terminal 1.
node N2 Runs the second mongod instance on port 42001 in terminal 2.
node N3 Runs the third mongod instance on port 42002 in terminal 3.
mongosh 1 Runs the rst mongosh in terminal 4 (connected to node N1, i.e., port 42000).
mongosh 2 Runs the second mongosh in terminal 5 (connected to node N2, i.e., port 42001).
mongosh 3 Runs the third mongosh in terminal 6 (connected to node N3, i.e., port 42002).

Table 1: Terminal-to-node/functionality mapping.

Remark: On most systems, you can change the title of the terminal (which is shown on top).
This is particularly useful if you have many terminal instances like in this exercise. For a better
overview, change the titles of the respective terminals to match the names given in Table 1.

2 Replicate the Hands-On Exercise

In order to replicate the hands-on exercise, we have to (1) import some data into our MongoDB
cluster with three nodes, (2) connect the mongosh terminals to our cluster, (3) insert a new
document and verify that it is replicated in our cluster, and (4) kill the PRIMARY node of our
cluster and conrm that our cluster is still operating correctly.

2

2.1 Data Import

Before we can import the data, wemust start the threeMongoDB nodes in replicationmode and
initiate the replication (i.e., tell the nodes that the data should be replicated to the other nodes).
Furthermore, we must also specify that each of our nodes writes its data to a dierent location
(to simulate that the three nodes are indeed separated from a storage point of view). Therefore,
we specify three options when starting the nodes: (1) We use the so-called replica set option,
–replSet, to specify that our three nodes are part of a common replication (i.e., MongoDB
servers that are part of the same replication set take care of the same data by replicating it).
(2) We specify the location of the database, –dbpath, such that each terminal (i.e., process)
maintains its own data (eectively mimicing three separate nodes). (3) Each node runs on a
dierent port, –port5. Listings 4–6 show how to start the MongoDB daemons that represent
our 3 nodes with the corresponding parameters (the dbtutorial@database-tutorial prexes
are omitted to t each command into a single line).

Listing 4: terminal – Start a Mongo daemon as part of replica set ReplicationTest on
node 1 (port: 42000, subdirectory: mongo/replica1).

1 :∼# mongod --replSet ReplicationTest --dbpath="/home/<username>/mongo/replica1" --port 42000

Listing 5: terminal – Start a Mongo daemon as part of replica set ReplicationTest on
node 2 (port: 42001, subdirectory: mongo/replica2).

1 :∼# mongod --replSet ReplicationTest --dbpath="/home/<username>/mongo/replica2" --port 42001

Listing 6: terminal – Start a Mongo daemon as part of replica set ReplicationTest on
node 3 (port: 42002, subdirectory: mongo/replica3).

1 :∼# mongod --replSet ReplicationTest --dbpath="/home/<username>/mongo/replica3" --port 42002

Next, we need to initialize the replica set, i.e., (a) we connect to node N1 with one mongosh

terminal (mongosh 1), (b) initiate the replication, and (c) add the other nodes to the replica set.
Therefore, we rst connect to node N1 using the mongosh terminal as shown in Listing 7.

Listing 7: terminal – Connect to node N1.

1 dbtutorial@database -tutorial:∼# mongosh –port 42000

Once connected, we refer to this specic terminal as mongosh 1, and we can use the command
shown in Listing 8 to check the status of our replica set (denoted rs). MongoDB will report an
output that is similar to the output that is shown at the end of Listing 8 (lines 2–7).

Listing 8: mongosh 1 – Check the status of our replica set (rs).

1 test > rs.status()
2 {
3 "ok" : 0,
4 "errmsg" : "no replset config has been received",
5 "code" : 94,
6 "codeName" : "NotYetInitialized"
7 }

5Port: https://en.wikipedia.org/wiki/Port_(computer_networking)

3

https://en.wikipedia.org/wiki/Port_(computer_networking)

The rs.status() command can be used any time in between the subsequent command to chck
the current status of our replica set. MongoDB reports that no replset cong has been received,
i.e., the replication set has not yet been initialized. Naturally, the next step is to initialize the
replica set (at node N1) and to add the other nodes to this replica set. Listing 9 shows how to
accomplish this.

Listing 9: mongosh 1 – Initialize our replica set (rs) and add the other nodes (node N2/N3).

1 test > rs.initiate()
2
3 test > rs.add("localhost:42001")
4 test > rs.add("localhost:42002")
5
6 test > rs.status()

Afterwards, the rs.status() command should provide more output and the key “members”
should map to a list that contains three entries: localhost:42000 (i.e., node N1) as PRIMARY, and
localhost:42001/2 (i.e., node N2/N3) as SECONDARY. This conrms that the replica set has been
successfully initiated and we can now continue with the actual data import.

For a general description on how to import JSON data into aMongoDB database, we refer to the
description of Assignment 26 and the MongoDB documentation7. The command in Listing 10
imports the (relatively small) arXiv collection8 into the database of node N1 (i.e., it is stored
in the corresponding directory mongo/replica1; identied by the port in the connection string
“42000”). The backslash “\” is used to have a multi-line command in the Linux terminal.

Listing 10: terminal – Import the plain arXiv JSON les into node N1 of our replica set.

1 dbtutorial@database -tutorial:∼# mongoimport "mongodb://localhost:42000" \
2 --db replicationTest --collection arxiv --file <path-to-file>/arxiv.json

2.2 Connect the mongosh Terminals

After the arXiv JSON le has been successfully imported, our replica set ensures that the data
is replicated from node N1 (on which we imported the data) to node N2 and N3 (which are part
of our replica set), respectively. We can verify this by opening two additional mongosh in-
stances that connect to the respective nodes. To connect to a particular node using the mongosh
command-line tool, we must use the –port option as shown in Listings 11 and 12, respectively.

Listing 11: terminal – Connect to node N2.

1 dbtutorial@database -tutorial:∼# mongo --port 42001

Listing 12: terminal – Connect to node N3.

1 dbtutorial@database -tutorial:∼# mongo --port 42002

Remark: By now, we should have six terminals opened, three of which run the nodes of our
cluster, i.e., nodes (node N1 – node N3; showing debug output recurrently) and three of which

6Assignment 2: https://dbresearch.uni-salzburg.at/teaching/2023ss/dim/assignment2.pdf
7The mongoimport tool: https://developer.mongodb.com/how-to/mongoimport-guide/
8Data of Assignment 2: https://kitten.cosy.sbg.ac.at/index.php/s/bMLHK7JfxjLGwok/download

4

https://dbresearch.uni-salzburg.at/teaching/2023ss/dim/assignment2.pdf
https://developer.mongodb.com/how-to/mongoimport-guide/
https://kitten.cosy.sbg.ac.at/index.php/s/bMLHK7JfxjLGwok/download

are mongosh terminal that are connected to the three nodes (mongosh 1 – mongosh 3; waiting for
user input).

Now that we have the six terminals set up, we can start using the cluster. First, we verify
that the data was indeed replicated to node N2 and node N3; cf. Listing 13. Line 1 queries
the MongoDB instance for the available databases; in lines 2–3, we switch to a new database
named replicationTest and show its collections (which should show one collection named
arxiv); line 4 counts the documents of the arxiv collection, and MongoDB should report three
documents in this collection.

Listing 13: mongosh 1/2/3 – Verify that the data has been replicated to all nodes N1/N2/N3.

1 test > show dbs
2 test > use replicationTest
3 replicationTest > show collections
4 replicationTest > db.arxiv.find().count()

Remark: In case that one of the above commands results in the exception shown in Listing 14,
please execute the command rs.secondaryOk()9 to resolve it. This should work for MongoDB
version 3.6.

Listing 14: mongosh 1/2/3 – NotPrimaryNoSecondaryOk exception.

1 uncaught exception: Error: listDatabases failed:{
2 "topologyVersion" : {
3 "processId" : ObjectId("60b775579c140578afb0f4bd"),
4 "counter" : NumberLong(4)
5 },
6 "operationTime" : Timestamp(1622636167, 1),
7 "ok" : 0,
8 "errmsg" : "not master and slaveOk=false",
9 "code" : 13435,
10 "codeName" : "NotPrimaryNoSecondaryOk",
11 "$clusterTime" : {
12 "clusterTime" : Timestamp(1622636167, 1),
13 "signature" : {
14 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
15 "keyId" : NumberLong(0)
16 }
17 }
18 }

2.3 Replication of a New Document

The replica set consists of two types of members: PRIMARY10 and SECONDARY11. In fact, there is
another type of node, a so-called arbiter12, butwe ignore this type for this exercise. In a nutshell,
the replication in MongoDB13 works as follows: There is a single PRIMARY node (node N1 in our
case) and multiple SECONDARY nodes (node N2 and node N3 in our case). All write operations are
served by the PRIMARY node, and the data is replicated to the SECONDARY nodes (specically, the
log les are replicated). The replication happens asynchronously.

9https://docs.mongodb.com/manual/reference/method/rs.secondaryOk/
10Replica Set Primary: https://docs.mongodb.com/manual/core/replica-set-primary/
11Replica Set Secondary Members: https://docs.mongodb.com/manual/core/replica-set-secondary/
12Replica Set Arbiter: https://docs.mongodb.com/manual/core/replica-set-arbiter/
13Replication: https://docs.mongodb.com/manual/replication/

5

https://docs.mongodb.com/manual/reference/method/rs.secondaryOk/
https://docs.mongodb.com/manual/core/replica-set-primary/
https://docs.mongodb.com/manual/core/replica-set-secondary/
https://docs.mongodb.com/manual/core/replica-set-arbiter/
https://docs.mongodb.com/manual/replication/

Note that only the PRIMARY node can serve write operations, whereas read operations can be
served by one of the SECONDARY nodes. If we assume this for now, we can only insert a new doc-
ument on node N1, i.e., using mongosh 1 (since it is the PRIMARY that initiated the replica set; ex-
ecuting the same command on one of the SECONDARY nodes will result in a NotWritablePrimary
exception). Before, however, we verify that none of our nodes contains this document (as of
yet); cf. Listing 15.

Listing 15: mongosh 1/2/3 – Check if the document is present on node N1/N2/N3.

1 replicationTest > db.arxiv.find({ "type": "Lehrveranstaltung" })

Once we veried this, we can insert the new document on node N1 as shown in Listing 16.

Listing 16: mongosh 1 – Insert a new document on node N1.

1 replicationTest > db.arxiv.insertOne({
2 "name": "Verteiltes Informationsmanagement",
3 "type": "Lehrveranstaltung"
4 })
5
6 replicationTest > db.arxiv.find({ "type": "Lehrveranstaltung" })

Although we cannot insert a new document on our SECONDARY nodes, the data is automatically
replicated from the PRIMARY node to the SECONDARY nodes, and we can verify this by searching
for the very same document on our SECONDARY nodes; cf. Listing 17.

Listing 17: mongosh 2/3 – Search for the newly inserted document on nodes N2/N3.

1 replicationTest > db.arxiv.find({ "type": "Lehrveranstaltung" })

Then, you should see the very same result as on node N1, and we conclude that MongoDB fully
replicated the new document automatically and transparently to the user.

2.4 Killing the PRIMARY

If the PRIMARY node is unavailable (for whatever reason), one of the SECONDARY nodes holds
an election to elect itself as the new PRIMARY14. Until a new PRIMARY is elected, the replica set
cannot process write operations. However, read operations can still be served by the SECONDARY
nodes (if congured appropriately).

In the nal step of this hands-on exercise, we kill the PRIMARY node and see if and howMongoDB
deals with it. Therefore, we simply terminate the mongod process that represents node N1 (using
CTRL + C or by simply closing the terminal). This triggers the election mechanism of MongoDB
and the remaining two nodes (i.e., the former SECONDARY nodes). If we now try to execute a
query in mongosh 1, we will get an error message because node N1 is not available (it is down).
Contrarily, the other two nodes N1 and N2 are still available andwe can continuewith mongo 2/3.

First, we can check which of the two nodes is the new PRIMARY node; cf. Listing 18.

14Replica Set Elections: https://docs.mongodb.com/manual/core/replica-set-elections

6

https://docs.mongodb.com/manual/core/replica-set-elections

Listing 18: mongosh 2/3 – Check the status of our replica set to nd the new PRIMARY.

1 replicationTest > rs.status()

Regardless of outcome of the election process (i.e., the specic node that is the new PRIMARY

node), we observe that our cluster is still available and functional.

Remark: In practice, we would like to connect to our cluster transparently, i.e., we do not
connect to a specic node (e.g., node N1) but to the cluster. In other words, if one node goes
oine, we do not want to update the connection or reconnect to our cluster. Instead, we want
our connection to stay valid as long as the cluster is running (available). Listing 19 shows how
to use mongosh to establish a connection transparently.

Listing 19: terminal – Connect to our cluster (i.e., replica set) transparently.

1 dbtutorial@database -tutorial:∼# mongosh --host ReplicationTest/localhost:42000

Although we still connect to node N1 (using port 42000), we get a transparent connection by
specifying the name of the replica set ReplicationTest in the connection string explicitly. If
we now kill the PRIMARY node, the election algorithm determines a new PRIMARY and we can
continue to use this connection without reconnection.

We conclude this hands-on exercise with another option for a transparent connection that uses
all three nodes in the connection string (Linux user prex omitted due to space constraints);
cf. Listing 20.

Listing 20: terminal – Connect to our cluster (i.e., replica set) transparently (variant 2).

1 :∼# mongosh "mongodb://localhost:42000,localhost:42001,localhost:42002/?replicaSet=ReplicationTest"

7

	Setup
	Replicate the Hands-On Exercise
	Data Import
	Connect the mongosh Terminals
	Replication of a New Document
	Killing the PRIMARY

