
Distributed Information Management

Daniel Kocher

Salzburg, Summer semester 2023

Department of Computer Science
University of Salzburg

Part II

Data Processing

1

Literature, Sources, and Credits

Literature:

• Silberschatz et al. Database System Concepts. McGraw Hill, Sixth Edition, 2010. In
particular Chapter 10 – Big Data.

Credits1: These slides are partially based on slides of other lectures.

• Slides of Silberschatz et al. Database System Concepts. McGraw Hill, Sixth Edition,
2010. In particular Chapter 10 – Big Data.

1Feedback credits: Werner Dähn

2

Introduction

Motivation

“Big data” does not fit into the memory of a single machine but needs to be processed.
−→ Requires a higher degree of distribution and parallelism.

Big Data Properties - “The Three Vs”:2

• Volume: Thousands of machines (nodes) are required to store and process the data
(e.g., volume increase by factor 300× from 2005 to 2020).

• Velocity: Data arrives at a very high pace (fast data) and needs to be processed
immediately to respond to certain events (e.g., real-time, batches, . . .).

• Variety: Di�erent data formats are used for di�erent purposes and may need to be
processed collectively (e.g., logs, the actual data of an application, video, pdf, . . .).

2Big data characteristics: https://en.wikipedia.org/wiki/Big_data#Characteristics

3

https://en.wikipedia.org/wiki/Big_data#Characteristics

Data Sources

The web and its various applications −→ Web logs.

• Recommendations
• User interaction pa�erns
• Advertisement
• . . .

Smartphone apps and data about the user interactions.

Internet of things:3 Sensors report data continuously and at a very high pace

Data from social media platforms.

Meta data in communication networks to predict/prevent problems.
3Internet of Things: https://en.wikipedia.org/wiki/Internet_of_things

4

https://en.wikipedia.org/wiki/Internet_of_things

Data Processing Frameworks

Related to database systems and di�erent solutions to process large amounts of data.

Problems?
• Satisfying the performance requirements is not easy.

• Parallelism
• Load balancing
• . . .

• Dealing with failures in distributed environments is not trivial.

• . . .

5

Data Processing Frameworks

Goal: A framework that implements these functionalities transparently.

• Facilitate complex data processing tasks.

• Transparent and automatic parallelization of the tasks.

• Built-in and transparent fault tolerance.

6

Data Storage

In Part I – Data Management, we covered:

• Di�erent models and systems to store complex data.

• Parallel and distributed database systems.

• Fragmentation (aka sharding) and replication.

We have not yet heard about distributed file systems.

7

Distributed File Systems

Every computer/operating system has a local file system (FS). E�ectively, the file
system takes care of how the data is stored on your hard disk and how the user can
retrieve it. Furthermore, the FS implements a common interface to access the files.

A distributed file system (DFS) provides the same functionality across a cluster of
nodes transparently, i.e., the user interacts with the DFS as if it would be a local FS.

Examples: The Google File System (GFS)4 and the Hadoop File System (HDFS)5.

4GFS: https://en.wikipedia.org/wiki/Google_File_System
5HDFS: https://en.wikipedia.org/wiki/Apache_Hadoop#Hadoop_distributed_file_system

8

https://en.wikipedia.org/wiki/Google_File_System
https://en.wikipedia.org/wiki/Apache_Hadoop#Hadoop_distributed_file_system

Distributed File Systems

Designed to store very large files (up to hundreds of gigabytes).

A file is split into k blocks B1–Bk, which are then distributed across multiple nodes.
Techniques like fragmentation and replication are o�en used in combination to provide
high availability.

Functionality:

• Hierarchical organization (i.e., directory structures).

• File reconstruction (i.e., mapping a filename to the distributed blocks).

• Access to a distributed file (through the filename).

9

The MapReduce Framework

Introduction

A generic framework (or paradigm) for a common situation in parallel computing:
Apply a function to each of our data items.

Specifically, we want to apply two functions one a�er another:

1. Apply a first function to each data item, the map() function.

2. Apply a second function to each result item of (1), the reduce() function.

Input
data

map Interm.
result

reduce
Final
result

Read Write Read Write

10

Example – WordCount

Task: Count the occurrence of each word in a collection of files.

1. Single file on a single machine (node) ⇒ Straightforward.

2. Multiple files on multiple nodes ⇒ Not that easy . . .

11

Example – WordCount with MapReduce

Input file:

There is only one Lord of the Ring, only one who can bend it to his will.

Desired Result:

Word Count Word Count Word Count Word Count

There 1 is 1 only 2 one 2
Lord 1 of 1 the 1 Ring 1
who 1 can 1 bend 1 it 1
to 1 his 1 will. 1

Specify the core logic through two complementary functions, map() and reduce().

12

Example – WordCount with MapReduce

Step 1: The map() function is invoked on each input record, and produces one or
more intermediate data items. Each intermediate data item is a key-value pair
(rkey, value).

13

Example – WordCount with MapReduce

The map() Function:� �
1 # Pseudocode in Python-like syntax.
2 def map (l i n e) :
3 # Each line is a record; split by whitespace.
4 for word in l i n e . s p l i t () :
5 # Output the intermediate data item.
6 # emit(x, y) is a pseudo function that outputs a pair (x, y).
7 emit (word , 1)� �

Listing 1: Simplified Python code for the map() function.

Output:
("There", 1), ("is", 1), ("only", 1), ("one", 1), ("Lord", 1),

("of", 1), ("the", 1), ("Ring", 1), ("only", 1), ("one", 1),

("who", 1), ("can", 1), ("bend", 1), ("his", 1), ("will.", 1)

14

Example – WordCount with MapReduce

Step 1: The map() function is invoked on each input record, and produces one or
more intermediate data items. Each intermediate data item is a key-value pair
(rkey, value).

Step 2: (rkey, value) pairs are grouped based on the key, i.e., data items with the
same key are grouped together. This results in one list per key, (rkey, valuelist).

15

Example – WordCount with MapReduce

(rkey, value) Pairs:

("There", 1), ("is", 1), ("only", 1), ("one", 1), ("Lord", 1),

("of", 1), ("the", 1), ("Ring", 1), ("only", 1), ("one", 1),

("who", 1), ("can", 1), ("bend", 1), ("his", 1), ("will.", 1)

(rkey, valuelist) Pairs:

("There", [1]), ("is", [1]), ("only", [1,1]), ("one", [1,1]), ("Lord", [1]),

("of", [1]), ("the", [1]), ("Ring", [1]), ("who", [1]), ("can", [1]), ("bend", [1]),

("his", [1]), ("will.", [1])

16

Example – WordCount with MapReduce

Step 1: The map() function is invoked on each input record, and produces one or
more intermediate data items. Each intermediate data item is a key-value pair
(rkey, value).

Step 2: (rkey, value) pairs are grouped based on the key, i.e., data items with the
same key are grouped together. This results in one list per key, (rkey, valuelist).

Step 3: The reduce() function is invoked on each (rkey, valuelist) pair and typically
aggregates the results for a specific rkey (i.e., word).

17

Example – WordCount with MapReduce

The reduce() Function:� �
1 # Pseudocode in Python-like syntax.
2 def reduce (rkey , v a l u e l i s t) :
3 count = 0 # total number of occurrences
4 for v a l u e in v a l u e l i s t :
5 count = count + v a l u e
6 # Output the final word count.
7 # emit(x, y) is a pseudo function that outputs a pair (x, y).
8 emit (rkey , count)� �

Listing 2: Simplified Python code for the reduce() function.

Final Result:
("There", 1), ("is", 1), ("only", 2), ("one", 2), ("Lord", 1),

("of", 1), ("the", 1), ("Ring", 1), ("who", 1), ("can", 1), ("bend", 1),

("his", 1), ("will.", 1)

18

The MapReduce Framework

What about multiple files on multiple machines?

What about parallelism?

19

The MapReduce Framework

B1 map1 B1 reduce1 B1
Read Local Write Remote Read, Shu�le Write

B2

B3

B4

. . .

Bk

Input data on DFS

map2

map3

. . .

mapm

B2

B3

. . .

Bm

Intermed. result

reduce2

. . .

reduces

B2

. . .

Bs

Final result
20

The MapReduce Framework

Each task (map/reduce) runs on a node, i.e., a node can be mapper and reducer.

Traditionally, MapReduce is disk-based, i.e., the input data for a map/reduce task is
read from hard disk and the (intermediate) result is flushed back onto hard disk.

Disclaimer: MapReduce is not the solution to all problems.

• Other systems (incl. DBSs) may be beneficial for particular problems.

• MapReduce is stateless, i.e., mappers/reducers are unaware of other
mappers/reducers ⇒ Not ideal for iterative algorithms.

Many parallel programming frameworks are based on the idea of MapReduce6, e.g.,
Apache Hadoop, Apache Spark, Apache Flink, . . .
6MapReduce: Simplified Data Processing on Large Clusters: https://research.google/pubs/pub62/

21

https://research.google/pubs/pub62/

WordCount with Parallel MapReduce

There is only map1

(“There”, 1), (“is”, 1),

(“only”, 1), (“the”, 1),

(“Ring”, 1), (“only”, 1)

reduce1

(“bend”, 1),

(“can”, 1), (“his”, 1),

(“is”, 1), (“Lord”, 1)

Read Local Write Remote Read, Shu�le Write

one Lord of

the Ring, only

one who can

bend it to

his will.

Input data (DFS)

map2

map3

map4

(“one”, 1),

(“Lord”, 1), (“of”, 1)

(“one”, 1), (“who”, 1),

(“can”, 1)

(“bend”, 1),

(“it”, 1), (“to”, 1),

(“his”, 1), (“will.”’, 1)

Intermed. result

“bend”, “can”,
“his”, “is”, “Lord”

reduce2

“one”, “only”,
“of”, “Ring”

reduce3

“the”, “There”,
“will.”, “who”

(“one”, 2), (“only”, 2),

(“of”, 1), (“Ring”, 1)

(“the”, 1),

(“There”, 1),

(“will.”’, 1), (“who”, 1)

Final result
22

The MapReduce Framework – Caveat

Communication: Jobs run in isolation.

Shu�ling large amounts of data: Performance and horizontal scalability o�en su�ers
due to communication overhead (bound by network I/O speed), e.g., two clients ⇒ 1

2

bandwidth, four clients ⇒ 1
4 bandwidth.

HDFS

Input
data1

Interm.
result1

Output
data1

map1 reduce1

Interm.
result2

Output
data2

. . .

map2 reduce2 map3 reducen

Output
datan

24

Workloads and Challenges

Batches vs. Streams – Revisited

Batch Data: A batch is a large but bounded static dataset. Before data can be
processed, all data must be completely available (e.g., on hard disk).

Streaming Data: A stream is an unbounded evolving dataset. Data items are
processed as they stream into the system one a�er another, i.e., the data does not have
to be completely available.

25

Batch Processing

We wait until a batch of data (i.e., a block of data) is accumulated and then we process
the data in the batch all at once. For example, we could analyze the data that
accumulates over one hour.

Data is stored but not processed at arrival. In some scenarios, we must rely on these
batches, e.g., when the “full” batch provides more insights.

A state is o�en transferred from one batch to the next.

26

Batch Processing

Data source . . .

Batch 2

accumulated data

Batch 1

Operation . . .

May serve as input again

27

Stream Processing

We do not wait for the data to accumulate but process each single data item
continuously (at arrival). This allows a real-time response and typically involves simple
transformations.

Stream processing is used if the data naturally arrives in a continuous stream (e.g.,
twi�er) or if we build a data-driven system that needs to respond quickly (e.g., fraud
detection).

Traditional stream processing is stateless, but modern systems (e.g., Apache Flink)
also implement stateful stream processing.

28

Stream Processing

Data source . . .

one data item at a time

It
em

6

It
em

5

It
em

4

It
em

3

It
em

2

It
em

1

Operation . . .

May serve as input again

29

Stateless vs. Stateful

Stateless Processing: The current operation processes the input data
independently, i.e., without considering preceding executions. The independence of
the state makes it easier to scale.

Stateful Processing: Preceding executions may influence the outcome of the
current execution, i.e., processing history is taken into account. Recording and
respecting the state makes it harder to scale.

30

Systems Potpourri

Apache Hadoop8

Open-source implementation of the MapReduce paradigm that is designed as batch
processing system.

• Supports a linear data flow but does not support iterative processing (i.e., loops).

• Is a disk-based system (HDFS), thus typically slower than in-memory systems.

• Scales to tens of thousands of machines (with commodity hardware).

• The Hadoop ecosystem7 is quite large.

7Hadoop Ecosystem: https://hadoopecosystemtable.github.io/
8Apache Hadoop: https://hadoop.apache.org/

31

https://hadoopecosystemtable.github.io/
https://hadoop.apache.org/

Apache Spark9

Open-source parallel processing system that is designed as micro-batch processing
system mainly for analytics operations.

During computation, the data is kept in main memory (RAM), thus Spark is
typically faster than Apache Hadoop. If the data does not fit into RAM, it falls back to
disk storage (e.g., using HDFS) and provides similar performance to disk-based systems.

• Supports iterative processing (e.g., machine learning).

• Generalizes MapReduce and integrates into the Scala programming language.

• Supports stream processing with micro-batches (time-based windows).

• Performance heavily relies on main memory.

9Apache Spark: https://spark.apache.org/

32

https://spark.apache.org/

Apache Spark

Spark implements the concept of so-called resilient distributed datasets (RDDs). An
RDD is an immutable distributed collection of data elements that is partitioned across
multiple nodes (for fault tolerance).

RDDs allow in-memory transformations and actions. Transformations are applied
in a lazy fashion, i.e., they are not executed immediately but tracked in a lineage
graph. This improves performance and implements the fault tolerance.

For the interested reader, we refer to the o�icial publications on Apache Spark10 11.

10Spark: https://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
11RDDs: https://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

33

https://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
https://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

Apache Spark

Lineage Graph: A graph that encodes how an RDD was derived (usually from stable
storage), e.g., RDD 2 was derived from RDD 1 (which may represent some input file).

RDD 1 RDD 2 RDD 3

RDD 4

RDD 5

transformation history

filter map

filter

union

union

Lazy Evaluation: Only actions trigger execution, transformations are recorded in the
lineage graph ⇒ More potential for optimizations (all transformations are known).

Fault Tolerance: Lost RDDs can be recomputed from other RDDs using the lineage
graph, i.e., lost data is recovered without replication.

34

Apache Spark

For a table-like abstraction, Spark implements dataframes. A dataframe is an
immutable distributed collection of data elements (like RDDs), but the data is
organized in columns (RDDs store unstructured data).� �

1 df = spark . read . j s o n (" members . j s o n ")
2 d f . show ()
3 # Prints the "schema", i.e., the types of keys + values
4 df . pr intSchema ()� �

Listing 3: Simplified Python code for table-like abstraction in Spark.

+--------------+------------+------------+ root

| name | employment | department | |-- name: string (nullable = true)

+--------------+------------+------------+ |-- employment: string (nullable = true)

| Daniel Kocher| Postdoc. | CS | |-- department: string (nullable = true)

| Thomas Hütter| Postdoc. | CS |

| Tijn De Vos | PhD Student| CS |

| ... | ... | ... |

+--------------+------------+------------+

35

Apache Spark – Lazy Evaluation

� �
1 # Lazy evaluation: .filter(.) and .select(.) are tracked in the lineage graph
2 d f f i l = d f . f i l t e r (\ $ " employment " == " PhD ␣ Student ")
3 d f s e l = d f f i l . s e l e c t (\ $ " name " , \ $ " department ")
4 # Only .show() triggers actual execution.
5 d f s e l . show ()� �

Listing 4: Simplified Python code for table-like abstraction in Spark.

+------------+------------+

| name | department |

+------------+------------+

| Tijn De Vos| CS |

+------------+------------+

36

Apache Kafka13

Initially developed by LinkedIn, Apache Kafka12 is a powerful building block in many
large-scale data processing pipelines. At its core, it is a distributed and
fault-tolerant logging system (distributed transaction log).

The internals are comparable to the logging mechanism in a database system (i.e., log
entries are stored in order in an append-only fashion).

Producer-Consumer Paradigm: Producer applications send (produce) messages to a
Kafka node. Messages are stored by “topic” and consumer applications subscribe to
topics to retrieve (consume) the messages from the queues they subscribed to.

12Kafka: https://www.microsoft.com/en-us/research/wp-content/uploads/2017/09/Kafka.pdf
13Apache Kafka: https://kafka.apache.org/

37

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/09/Kafka.pdf
https://kafka.apache.org/

Apache Kafka

A
pa

ch
e
K
af
ka

C
lu
st
er

Topic 1

. . .

M1,3

M1,2

M1,1

Topic 2

. . .

M2,3

M2,2

M2,1

Topic 3

. . .

M3,3

M3,2

M3,1

. . .

Producer2Producer1 . . . Producern

Topic 1Topics 1 + 2 Topics 2 + 3

Consumer2Consumer1 . . . Consumerm

Topic 1 – 3Topics 1 Topic 3

Mi,j . . . j-th message of topic i
38

Apache Flink 14

Open-source parallel processing system that is designed as native stream
processing system.

• The streaming architecture supports iterative processing (e.g., machine learning).

• Unified framework for processing batches and streams.

• Can operate in a stateful or stateless computation mode.

• Implements fault tolerance through checkpoints/snapshots.

14Apache Flink: https://flink.apache.org/

39

https://flink.apache.org/

Apache Flink

Distributed Stream Processing: Data items in the streams are grouped and
distributed based on a key (cf. colors). Each node is responsible for a specific key range.

. . .

. . .

. . .

. . .

Op.

Node 1

Op.

Node 2

Op.

Node 3

. . .

. . .

. . .

. . .

. . .

40

Apache Flink

Stateful Distributed Stream Processing15: The state is accumulated and
maintained over time in a distributed manner by co-locating it (i.e., storing it on the
node that runs the operation).

. . .

. . .

. . .

Op.

Node 1

State of node 1

Op.

Node 2

Op.

Node 3

. . .

. . .

. . .

15Simplified description. Details: https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html

41

https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html

Apache Flink

Fault Tolerance16: Special items called barriers are injected into the streams and force
the nodes to write a checkpoint of data and state onto (distributed) durable storage
(e.g., HDFS). Node i records its data and state since the last barrier was processed.

. . .

. . .

. . .

Barrier

Op.

Node 1

Op.

Node 2

Op.

Node 3

. . .

. . .

. . .

HDFS

State of node 3 since last barrier
Items of node 3 since last barrier

16Simplified description. Details: https://ci.apache.org/projects/flink/flink-docs-release-1.1/internals/stream_checkpointing.html

42

https://ci.apache.org/projects/flink/flink-docs-release-1.1/internals/stream_checkpointing.html

Apache SystemDS19

Formerly known as SystemML (developed by IBM). Apache SystemDS is a distributed
machine-learning (ML) system that scales to large clusters. Its focus is on the
integration of the entire data science lifecycle (i.e., data integration, cleaning, and
preparation; ML model training; serving the data).

SystemDS17 18 bridges the gap from simple ML algorithms wri�en in R/Python to
executing the ML algorithm at scale on a large cluster. It provides a declarative
language for ML and can execute in-memory on a single machine or on a Spark cluster.

17Inside Apache SystemDS: https://www.youtube.com/watch?v=n3JJP6UbH6Q
18SystemDS: http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf
19Apache SystemDS: https://systemds.apache.org/

43

https://www.youtube.com/watch?v=n3JJP6UbH6Q
http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf
https://systemds.apache.org/

	Data Processing
	Introduction
	The MapReduce Framework
	Workloads and Challenges
	Systems Potpourri

