
UV Distributed Information Management
Summer term 2023

Supplementary Material

�is document provides supplementary material regarding terms, topics, and questions that
have been discussed during the lecture, and is supposed to support the students.

1 Data Management

�is section covers supplementary material of part 1 on Data Management.

1.1 Computer Science Terminology

�is section contains descriptions of all terms that have been discussed during the preliminary
talk (Vorbesprechung, in german). Figure 1 summarizes the most important parts of a computer
system (CPU, caches, main memory, and SSD/HDD) for our course.

Figure 1: A computer system as geographical map (simpli�ed).

Processor / CPU (Prozessor, in german) CPU1 stands for Central Processing Unit and this
is (as the name suggests) the main computational unit in a computer system. A CPU has a
de�ned set of so-called instructions that basically denotes the language it understands (in
binary format2, i.e., a sequence of bits each of which can be 0 or 1). Here, it is important to
realize that a CPU understands exactly and only this set of instructions and nothing else.
When we switch on the power of our computer system, the CPU starts to run in a so-called
cycle that naively executes one instruction a�er another, i.e., the CPU does not have any
notion of intelligence. It simply executes the instructions we tell it to execute, e.g., by
writing code in some programming language that is translated into the set of instructions
our CPU understands. We will use the terms CPU and processor synonymously.

Main memory (RAM; Hauptspeicher, in german) Main memory3 is a so-called volatile
memory in a computer system that stores code and data during execution of an applica-
tion. Typical main memory sizes range from 1 − 2GB to sometimes > 100GB (nowadays;
1GB = 1Gigabyte = 230Bytes4 = about a billion Bytes). Importantly, information that is
stored on volatile memory is lost as soon as the power is switched o�, i.e., all bits are
set to 0. However, main memory is quite fast as it does not have to care about durability.
Every single bit of code and data during the execution of an application is stored in main
memory (at some point). When we execute an application/our code, the corresponding
bits are transferred from main memory to the CPU instruction by instruction, each of
which is then executed by the CPU.

HDD (Festpla�e, in german) HDD5 stands for Hard Disk Drive and denotes a durable, non-
volatile memory that is used to store information permanently (even when the power
is switched o�). Typical HDD sizes range from tens of GB to sometimes tens or even
hundreds of TB (nowadays; 1TB = 1Terabyte = 240Bytes = about a trillion Bytes). Although
HDDs provide much more storage, they are orders of magnitude slower compared to main
memory. �erefore, computer systems want to minimize accesses to information that is
stored on the HDD if possible (and rather retrieve it from main memory). Nonetheless,
sometimes it is simply not possible to avoid the HDD access because information that
must not be lost is stored there. Once our computer system is running, information (i.e.,
bytes) is regularly transferred from the slower to the faster memory (e.g., from HDD to
main memory) in order to speed up the overall system performance.

SSD SSD6 stands for Solid-State Drive and denotes the de-facto successor technology to HDDs.
SSDs provide properties that are similar to HDDs (i.e., durable, non-volatile memory and
information is stored permanently) but the underlying technology is completely di�erent
(HDD: magnentic storage, SSD: �ash storage). As a result, SSDs are faster than HDDs but
still slower than main memory. Despite being faster than HDDs, computer systems still
try to minimize access to information that is stored on SSDs (as it is still slow compared
to main memory access). Typical SSD sizes range from tens of GB to sometimes a few TB
(nowadays).

Cache (Zwischenspeicher, in german) A cache7 is essentially a small but very fast piece of
memory in a computer system, which is used to temporarily store data that has been

1Central Processing Unit: https://en.wikipedia.org/wiki/Central processing unit
2Binary format: https://en.wikipedia.org/wiki/Binary file
3Main memory: https://en.wikipedia.org/wiki/Computer data storage#Primary storage
4Byte: https://en.wikipedia.org/wiki/Byte
5HDD: https://en.wikipedia.org/wiki/Hard disk drive
6SSD: https://en.wikipedia.org/wiki/Solid-state drive
7Cache: https://en.wikipedia.org/wiki/Cache (computing)

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Binary_file
https://en.wikipedia.org/wiki/Computer_data_storage#Primary_storage
https://en. wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Cache_(computing)

transferred from main memory to the CPU. �e objective of a cache is to speed up future
accesses to the data/code that is cached (i.e., currently stored in the cache) and to avoid
the long way to main memory. Modern computer systems typically have multiple cache
levels (L1, L2, L3): For 𝑥 < 𝑦, L𝑥 is smaller and faster than L𝑦 since L𝑥 is physically (or
geographically if we consider the computer systems as a map) closer to the CPU than
L𝑦. Typical cache sizes range from tens of KB (L1; 1KB = 1Kilobyte = 210Bytes = about a
thousand Bytes) to tens or hundreds of MB (L3; 1MB = 1Megabyte = 220Bytes = about
one million Bytes).

Memory hierarchy (Speicherhierarchie, in german) �is term refers to the hierarchy of
memory8 units that are present in basically every (modern) computer system. We have
already learned about main memory, caches, SSDs, and HDDs, but there are even more
memory units like CPU registers. �e memory hierarchy is a pyramid that tells us about
the size (i.e., storage capacity), the speed (to access some code/data that is stored there),
and the volatility (i.e., is the content of the memory unit lost or not when we switch o�
our system) of a particular memory unit. �e smallest, fastest, volatile, and (typically)
most expensive memory units are located at the top of this hierarchy, whereas the largest,
slowest, non-volatile, and (typically) cheapest memory units are at the bo�om. Figure 2
visualizes the hierarchy: At the top, we �nd the CPU registers, which are tiny memory
units (only a few Bytes) that are inside the CPU. Subsequently, we �nd the di�erent levels
of caches, main memory, SSDs, and HDDs (in this order). Further below, we �nd very
large but very slowmemory units like magnetic bands that are used for long-term backups
(over decades). �ere exist more types of memory units in a modern computer system
but for our purpose the memory units shown in Figure 2 su�ce. With this hierarchy,
we can directly see why systems typically want to minimize the accesses to HDD and
even SSD: �e performance gap between main memory and HDD is about 5 orders of
magnitude, i.e., an access to main memory is 105 = about 100, 000 times faster than the
equivalent access to HDD (and about 102 = about 100 times faster than the equivalent
access to SSD). On the one hand, this is because main memory is based on a faster
technology that SSDs and HDDs, respectively. On the other hand, this is also due to the
physical (or geographical) location within our computer system, i.e., memory units that
are physically (or geographically) located nearby the CPU are faster because every signal
in a computer system “travels” at the speed of light (299, 792, 458m/s; we cannot overcome
this physical limitation). Consequently, data/code that resides in, say, the L1 cache can
be accessed much faster than from memory units that are farther away from the CPU.
Figure 1 illustrates this principle in a computer system. As a real-world analogy, we can
consider traveling by car at a constant speed of 100km/h from Salzburg to (a) Linz (about
130km) and (b) Vienna (about 300km). Our journey to Linz will take us about 1.3 hours,
whereas our journey to Vienna will take us about 3 hours. A similar reasoning can be
applied for the other levels in our hierarchy.

Physical level (Physische Ebene, in german) In a computer system, this level (or layer)
refers to the physical components, e.g., main memory, the CPU, and HDDs, and denotes
the lowest level where everything is encoded in bits and Bytes (i.e., a sequence of 8
consecutive bits). At this level, a computer system is just an electrical circuit (or many
interconnected electrical circuits) that modi�es the bits. �e fact that we can use a
computer system as we do nowadays is based on additional levels that hide the complexity
of this level from us.

Instruction(s) (Instruktion(en), in german) We already know that a CPU has a de�ned

8Memory hierarchy: https://en.wikipedia.org/wiki/Memory hierarchy

https://en.wikipedia.org/wiki/Memory_hierarchy

Figure 2: �e portion of the memory hierarchy that is relevant for our course.

set of so-called instructions that basically denotes the language it understands in bi-
nary format. An instruction9 has a de�ned behavior and represents an operation en-
coded as sequence of bits (binary format). (Simpli�ed) example instructions include
ADD two numbers and store the result in a register, or LOAD the content of the

location in memory that refers to a particular variable, or JUMP/BRANCH to some

other instruction (to represent control-�ow, i.e., encode if-else, loops, and function
calls in high-level programming languages). Every code that we write in a (high-level)
programming language is (at some point) translated into a sequence of such instructions,
and instructions e�ectively determine the behavior our application and, ultimately, our
computer system. Once press the power bu�on, it starts to execute the very �rst instruc-
tion until the startup process is �nished. �en, everything we do on our machine (e.g.,
navigate with the mouse pointer, write some document, browse through the internet, or
execute our own code) results in many instructions (> 109 instructions per second) that
are execute by the CPU in the background and we observe the result of these instructions
(e.g., the mouse pointer moves, a character appears in our document, a website is loading,
or our code makes a particular step).

Operation(s) (Operation(en), in german) An operation10 is the result of an instruction that
is executed by the CPU. For example, an instruction may encode addition of two numbers
(i.e., the ADD instruction) with the result being stored in some register. �e corresponding
operation is “Addition” and the execution of this instruction changes the value of a register.
In this sense, an operation can be seen as the behavior of our computer system when
executing the corresponding instruction. Furthermore, instructions are typically “small”,
i.e., they serve a very restricted purpose. If we want to add 5 numbers and store the result
in a register, then we need to execute multiple ADD instructions consecutively because one
ADD instruction can only add two numbers at a time. From this point of view, operations
may also be considered to contain multiple instructions (depending on the context).

Address (Adresse, in german) An address11 in a computer system uniquely identi�es a par-
ticular location in memory. Abstractly, memory can be seen as a big box with many tiny

9Instruction(s): https://en.wikipedia.org/wiki/Instruction set architecture#Instructions
10Operation(s) in computer systems: https://en.wikipedia.org/wiki/Operator (computer programming)
11Memory address: https://en.wikipedia.org/wiki/Memory address

https://en.wikipedia.org/wiki/Instruction_set_architecture#Instructions
https://en.wikipedia.org/wiki/Operator_(computer_programming)
https://en.wikipedia.org/wiki/Memory_address

slots each of which can, for example, store 64 bits. In order to refer unambiguously to
a particular slot, the slots are numbered consecutively from 0 to 𝑛 − 1 (for 𝑛 slots), just
like addresses in the real world. If an application uses a variable, then each variable is
associated with one or multiple such slots in memory. Whenever the variable is read or
modi�ed, the computer system then automatically accesses the corresponding slot(s) in
memory and retrieves or overwrites the content of the slot(s). �e storage capacity of our
memory is then the sum of all these tiny slots in this box.

Parallelism (Parallelismus, in german) (Hardware) Parallelism12 refers to the physical abil-
ity of a computer system to perform multiple actions truly simultaneously. �is is only
possible if there exist multiple physical resources (typically CPUs) that can independently
work on di�erent tasks. As a real-world analogy, we can consider 𝑘 students in class
(the CPUs) that can perform di�erent tasks independently (from start to �nish, without
interruption). Now consider 10 · 𝑘 tasks that we need to work on during class. A single
student has to work on every single task one a�er another. Contrarily, 𝑘 students can
work on 𝑘 tasks in parallel. �erefore, to overall time to �nish 10 · 𝑘 tasks is 10 times
lower for 𝑘 students, i.e., we get a 10× speed up in our system.

Concurrency (Nebenläufigkeit, in german) �is term refers to the illusion that multiple
actions seemingly happen simultaneously, but they actually do not happen in parallel
because there are not enough physical resources for parallelism. Consider a single CPU
that can only execute a single instruction at a time and 𝑘 tasks that are supposed to be
executed simultaneously (e.g., we use multiple applications like a browser, an editor, an
email client, and so on). In order to create the illusion of seemingly parallel execution of
all 𝑘 tasks, the instructions of each task are divided into blocks, e.g., one block may contain
10 instructions. �e CPU starts to execute the �rst 10 instructions of task1. �en, the
CPU switches to task2 and executes the �rst 10 instructions of task2. �e same principle
is applied until the �rst 10 instructions have been executed for every task, and then the
CPU starts to continue in this manner with the next block of instructions for task1 (i.e.,
instructions 11-20 of task1). In computer systems, a CPU can typically execute > 109
instruction per second, hence a human is not able to properly observe the fact that the
tasks are not really execute in parallel but only concurrently13. Reusing the real-world
analogy from our discussion on parallelism, this means that we only have a single student
that works on 𝑘 tasks concurrently. Each task may be to write down a particular Wikipedia
article on a sheet of paper and a block of 10 instructions means that the student can write
down 10 characters from the corresponding article. �e student starts writing down the
�rst 10 characters of article1, then the �rst 10 characters of article2 (on a di�erent sheet of
paper), and so on. A�er writing down the �rst 10 characters of each article, the student
starts over and writes down the next 10 characters of each article until every article is
fully replicated. In the end, the result is identical as if the student would have wri�en
down each article completely (one article a�er another).

Compiler (Übersetzer, in german) A compiler14 refers to a tool in computer science that
allows us to translate code that is wri�en in a (high-level) programming language (e.g.,
Java) into a representation that can be executed on our CPU. �at is, a compiler trans-
lated a given code into a sequence of bits (binary format), which encodes a sequence of
instructions that is semantically equivalent to our code wri�en in some programming
language. �e CPU is then able to execute one instruction of this sequence of instructions

12Parallelism: https://en.wikipedia.org/wiki/Parallel computing
13Concurrency: https://en.wikipedia.org/wiki/Concurrent computing
14Compiler: https://en.wikipedia.org/wiki/Compiler

https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Compiler

a�er another, and this e�ectively re�ects the behavior of our code. Typically, a portion of
our code (e.g., if-else) is translated into multiple instructions.

Virtual machine (VM; virtuelle Maschine, in german) Sometimes, wewant to execute code
that is based on instructions that our native CPU does not understand, and it is no option
to use a di�erent hardware (i.e., CPU). For example, ARM processors15 that is o�en used
in smartphones is very di�erent from x86 processors16, which are common in Desktop
computers. In this case, a virtual machine17 (VM) may help: We can use a so-called
hypervisor so�ware18 like VirtualBox19 to create a virtual machine that provides the
functionality of a “real” physical computer system (CPU, main memory, and the likes).
However, all this functionality is implemented in so�ware (rather than in hardware).
For example, we can create a virtual machine that runs ARM instructions and host it
using, e.g., VirtualBox, on our Desktop computer that is based on the x86 architecture.
VirtualBox then acts as link between our x86 and our ARM architecture. Moreover, virtual
machines are also quite useful for reproducibility, i.e., to reproduce a particular behavior
on a di�erent physical machine. �e la�er is also the reason why we use virtual machines
in this course: It is easier for the instructor to reproduce an error that you encountered
when you and the instructor use the same virtual machine.

Time (Zeit, in german) �is term is mostly used in combination with complexity, i.e., com-
puter scientist o�en argue about time complexity20. It refers to the amount of runtime it
takes on a computer system to execute an algorithm21 that serves a speci�c task. �e time
complexity is then the overall amount of runtime to �nish the algorithm. Assuming that
an operation in a computer system takes a constant amount of time, the time complexity
is estimated by “counting” the number of operations the system needs to execute. We will
use this term in a simpli�ed manner (no formal de�nition) to argue whether something
runs fast or rather slow in a computer system.

Space (Raum, in german) �is term is also mostly used in combination with complexity and
is orthogonal to time complexity. However, space complexity22 refers to the amount of
memory it takes on a computer system to execute an algorithm that serves a speci�c task.
�e space complexity is then the overall amount of memory that is consumed to �nish
the algorithm. Similar to time complexity, we will use t his term in an informal manner to
argue whether something needs a large or rather small amount of memory in a computer
system.

Performance (Performanz, in german) Performance23 is a rather general term that refers
to the amount of meaningful work in a computer system, i.e., how e�ectively a system
can achieve its goal or task. In our course, performance is mostly related to runtime
and memory, but also to availability and data transmission when discussing distributed
systems.

E�iciency (E�izienz, in german) E�ciency24 is o�en confused with performance and in
some sense they are related. However, e�ciency refers to how “good” a particular system

15�e ARM architecture family: https://en.wikipedia.org/wiki/ARM architecture family
16�e x86 architecture: https://en.wikipedia.org/wiki/X86
17Virtual Machine: https://en.wikipedia.org/wiki/Virtual machine
18Hypervisor: https://en.wikipedia.org/wiki/Hypervisor
19VirtualBox: h�ps://en.wikipedia.org/wiki/VirtualBox
20Time complexity: https://en.wikipedia.org/wiki/Time complexity
21Algorithm: https://en.wikipedia.org/wiki/Algorithm
22Space complexity: https://en.wikipedia.org/wiki/Space complexity
23Performance: https://en.wikipedia.org/wiki/Computer performance
24E�ciency: https://en.wikipedia.org/wiki/Efficiency

https://en.wikipedia.org/wiki/ARM_architecture_family
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Space_complexity
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Efficiency

or algorithm is able to achieve its goal or task in terms of resource utilization. In our
course, e�ciency is mostly related to runtime and memory. For example, a computer
system is runtime- and memory-e�cient if it achieves its goal or task while consuming
a only a li�le amount of time and memory (i.e., it is not wasteful). Nowadays, systems
are also o�en required to be energy-e�ciency, i.e., to consume only li�le energy while
achieving its goal or task. Of course, a system can also achieve its goal or task by following
a di�erent, less e�cient strategy but the user/company may pay the price (e.g., by paying
higher energy or hardware costs).

Scalability (Skalierbarkeit, in german) �is term refers to the ability of a computer systems
to handle larger amounts of work by possibly adding additional hardware resources such
as CPUs, memory, or even full machines (in a distributed system). For example, assume
our computer system is required to execute a task 𝑋1 of size |𝑋1 |, and our system is able
to do this in 𝑡1 seconds. Now, we double the amount of work, i.e., we execute a task 𝑋2 of
size |𝑋2 | = 2 · |𝑋1 |. As a consequence, our system will probably not �nish the task 𝑋 2 in 𝑡1
seconds, but it will need more time 𝑡2 > 𝑡1. �e factor 𝑡2

𝑡1
is called scalability factor25, and

we want to keep this factor constant and small. Another option is to double the number
of hardware resources, e.g., the number of CPUs in our system. �en, we may be able
to keep our initial runtime 𝑡1 even for task 𝑋2, but only because we leverage additional
computational power. In this case, we scale the CPUs and, again, we want to a constant
and low number of additional CPUs that are required to keep 𝑡1. As a real-world analogy,
we can borrow the scenario of our discussion on parallelism: A student is able to achieve
1 task in 𝑡1 seconds and we want to �nish 10 tasks. If we stick with a single student, the
overall time 𝑡10 will be about 10 times higher. Contrarily, if we scale out to 10 students
each of which works on a di�erent task independently in parallel, then we may end up
with all 10 tasks being �nished in 𝑡1.

Redundancy (Redundanz, in german) In general, redundancy26 refers to the duplication
of a resource where each duplicate serves the same (or a very similar) purpose. Examples
include multiple copies of the same data or multiple wires that connect a building to the
internet. Depending on the speci�c context, redundancy can have a positive or negative
connotation. On the positive side, redundancy allows us to tolerate errors in systems
because we can simply use a di�erent copy to achieve our goal or task. For example, if
we want our system to be available 24 hours, 7 days a week, 365 days a year, we can have
multiple di�erent ways to connect to the internet. If our primary connection is down, we
simply use one of the other connections. On the negative side, redundancy in data may
also cause anomalies and inconsistencies as well as performance degradation because we
need to keep all the data copies up to date.

Transparency (Transparenz, in german) �is term has many di�erent meanings even in
the context of computer science. In our course, we will mainly use the adjective form of
this term in combination with functionality. A functionality is considered transparent
to the user if the complexity of this functionality is hidden from the user. For example,
cloud services are typically transparent to the user because the user does not need to
care about how and where the data is stored without being lost. Another example is the
transparent translation from website URLs into IP addresses (i.e., addresses that uniquely
identify a website in the world wide web).

25Scalability: https://en.wikipedia.org/wiki/Scalability
26Redundancy: https://en.wikipedia.org/wiki/Data redundancy and https://en.wikipedia.org/wiki/

Redundancy (engineering)

https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Data_redundancy
https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Redundancy_(engineering)

Database system (DBS; Datenbanksystem, in german) A database system27 (DBS) is a
dedicated so�ware system that manages (typically) large amounts of data and provides
functionality to users to access and modify this data transparently.

�ery (Anfrage, in german) Users typically interact with database systems using so-called
queries. A query is formulated in a so-called query language, which is a well-de�ned
computer language that allows a user to specify what she/he wants the database system
to do, e.g., retrieve or modify a speci�c portion of the data or create new entries.

Transaction (Transaktion, in german) Transactions28 are commonly known from electronic
banking systems, where transaction are used to transfer some amount of money between
two users. In database systems, this concept is generalized to encapsulate multiple op-
erations into one transaction. Each transaction is typically an atomic and independent
unit, that is, a transaction is executed in an all-or-nothing manner and transactions do
not in�uence each other if they are executed concurrently. If the database system fails to
execute a transaction successfully, then the transaction is reverted such that the system
is in the state it has been before the transaction. Revisiting the electronic banking system,
we intuitively observe that this is the desired behavior as we would not be happy if the
money is lost during the transfer (i.e., neither of the two users has the money in the end).

Index An index29 is a data structure in a database system that is used as shortcut to some
portion of the data in order to speed up queries. �ere exist di�erent types of indexes
(depending on their purpose), but for our course, it su�ces to view an index as black
box that provides a shortcut. A real-world analogy can be found at the end of basically
every technical book: �e index lists words together with the page numbers where the
respective term occurs.

Imperative (Imperativ, in german) In imperative programming30 we specify how the com-
puter system achieves its goal or task. In other words, we use statements to specify
the commands the computer system must execute, i.e., we describe the single steps the
computer must execute one a�er another to �nally achieve its goal or task. In the most
extreme case, we need to specify every single tiny step one by one. As a real-world
analogy, we can tell a person to get us some milk, and we specify every single step the
person needs to do (i.e., specify the supermarket, the shelve, the brand, and so on – the
person has no freedom but naively follows our instructions).

Declarative (Deklarativ, in german) In contrast to imperative programming, declarative
programming31 refers to a programming paradigm where we only specify what we want
the computer system to achieve, but do not care about how it achieves it. In the most
extreme case, we do not know anything about how the system achieves its goal or task.
Reusing the real-world analogy from our discussion on imperative programming, we
would only tell the person to get us some milk and nothing else (i.e., we do not care about
the speci�c supermarket, shelve, brand, and so on – the person can decide on her/his
own).

Trade-o� (Kompromiss, in german) �is is a general term that is used in many di�erent
domains. In computer science, this term is important because computer systems o�en

27Database system: https://en.wikipedia.org/wiki/Database
28Transaction: https://en.wikipedia.org/wiki/Database transaction
29Index: https://en.wikipedia.org/wiki/Database index
30Imperative programming: https://en.wikipedia.org/wiki/Imperative programming
31Declarative programming: https://en.wikipedia.org/wiki/Declarative programming

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Database_index
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Declarative_programming

have to trade some property in order to enable another property. A traditional trade-
o�32 in computer systems is the so-called time-space trade-o�: If we allow the system to
consume more memory, then this may speed up to computation. Contrarily, if we allow
the system to consume more time (e.g., be slower), then we may end up consuming less
(or even no) memory at all. As a real-world analogy, we consider a person that wants
to know the individual results of 10 calculations where the second calculation depends
on the �rst calculation, the third depends on the second one, and so on. If we allow the
person to use a sheet of paper to write down the results of previous calculations, she/he
can simply reuse these results to calculation the remaining results. Contrarily, if we do
not allow the person to use a sheet of paper , she/he must recalculate every previous
result over and over again. Obviously, the usage of a sheet of paper (i.e., more memory)
speeds up the process, i.e., we traded space for time. During our course, we will learn
about di�erent trade-o�s in the design of a database system.

Distributed (Verteilt, in german) �is course is about distributed information management,
where distributed33 refers to the property of a so�ware system to be physically sca�ered
over multiple physical machines each of which is located in di�erent geographical loca-
tions. In order to communicate with each other, the physical machines are interconnected
using a dedicated network or simply the internet. Typically, distributed systems provide
their functionality to the user transparently.

1.2 Database Systems Terminology

Data integrity (Datenintegrität, in german) �is term has di�erent meanings. In the con-
text of information security, data integrity refers to the prevention of unauthorized modi�-
cation of information. In other words, data integrity de�nes the correctness or validity of
the data upon modi�cation (done by humans or machines). In our context, consistency (or
integrity) constraints are used to describe conditions that must be satis�ed for the data to
be correct. �e data are consistent (or of integrity) if all the constraints are satis�ed.
Example: If an a�ribute 𝐴 stores the balance of a bank account, we may want to disallow
values that are smaller than EUR -5,000 (i.e., we allow a credit of at most EUR 5,000 per
bank account). If a customer then tries to lend more than EUR 5,000 from our bank, this
constraint is violated and the system may prevent it.

Key (Schlüssel, in german) In the relational model (record-based tables), we need a way to
distinguish the rows. Let 𝐾 be a subset of the a�ributes (columns) of a relation (table). 𝐾
is called super key if the a�ributes of 𝐾 su�ce to uniquely identify a tuple (row) in the
relation. 𝐾 is a candidate key if 𝐾 is a super key and 𝐾 cannot be further reduced (i.e., no
a�ributes can be removed) without losing the super key property. A candidate key that
consists of a�ributes that are rarely subject to updates is typically chosen as primary key.
Example: �e social security number, the bank account identi�er, or the registration
number at universities are prototypical examples of primary keys. However, also a
combination of multiple a�ributes can serve as primary key, e.g., the combination of
�rstname, lastname, and birthyear.

Schema In our lecture, the schema refers to the overall design of a database, i.e., it de�nes the
structure of the data (similar to a variable declaration in a programming language) and
the relationships between the data. We distinguish between relation and database schema.
�e relation schema refers to the schema of a single relation (table; in the relational

32Trade-o�: https://en.wikipedia.org/wiki/Trade-off
33Distributed systems: https://en.wikipedia.org/wiki/Distributed computing

https://en.wikipedia.org/wiki/Trade-off
https://en.wikipedia.org/wiki/Distributed_computing

model), whereas the database schema refers to the collection of all relation schemata in
the database.
Caveat: �e term schema may have a di�erent meaning in some database systems, e.g., a
schema may subsume multiple tables. �erefore, we recommend to read the manual of
the database system at hand. Nonetheless, we use the term schema as described above.

2 Pointers to Additional Material

In this section, we give pointers (references) to other material/videos that mostly provide more
in-depth knowledge on certain topics related to database systems:

Database Courses at the University of Salzburg �e Database Research Group at the Uni-
versity of Salzburg teaches many topics in the area of database systems in more depth.
Please check the respective websites for more information on the speci�c topics:

• Databases 1: https://dbresearch.uni-salzburg.at/teaching/2021ss/db1/
• Databases 2: https://dbresearch.uni-salzburg.at/teaching/2020ws/db2/
• Databases Tuning: https://dbresearch.uni-salzburg.at/teaching/2021ss/dbt/
• AdvancedDatabases: https://dbresearch.uni-salzburg.at/teaching/2020ws/adb/
• Non-Standard Database Systems: https://dbresearch.uni-salzburg.at/teaching/
2021ss/nsdb/

• Similarity Search: https://dbresearch.uni-salzburg.at/teaching/2020ws/ssdb/

Big Data Engineering on Youtube Jens Di�rich, a database systems and data science pro-
fessor at the Saarland University, streams his lecture on Big Data Engineering live on
Youtube (old videos are also available):
https://www.youtube.com/user/jensdit/videos

Youtube Channel of the CMU Database Group �e Carnegie Mellon University is one of
the top universities in Computer Science. �e Database Group has many videos in their
Youtube channel that cover most of the topics we covered in class in more detail:
https://www.youtube.com/c/CMUDatabaseGroup/videos

• Intro toDatabase Systems: https://www.youtube.com/playlist?list=PLSE8ODhjZXjbohkNBWQs
otTrBTrjyohi

• AdvancedDatabase Systems: https://www.youtube.com/playlist?list=PLSE8ODhjZXjasmrEd2
Yi1deeE360zv5O

https://dbresearch.uni-salzburg.at/teaching/2021ss/db1/
https://dbresearch.uni-salzburg.at/teaching/2020ws/db2/
https://dbresearch.uni-salzburg.at/teaching/2021ss/dbt/
https://dbresearch.uni-salzburg.at/teaching/2020ws/adb/
https://dbresearch.uni-salzburg.at/teaching/2021ss/nsdb/
https://dbresearch.uni-salzburg.at/teaching/2021ss/nsdb/
https://dbresearch.uni-salzburg.at/teaching/2020ws/ssdb/
https://www.youtube.com/user/jensdit/videos
https://www.youtube.com/c/CMUDatabaseGroup/videos
https://www.youtube.com/playlist?list=PLSE8ODhjZXjbohkNBWQs_otTrBTrjyohi
https://www.youtube.com/playlist?list=PLSE8ODhjZXjbohkNBWQs_otTrBTrjyohi
https://www.youtube.com/playlist?list=PLSE8ODhjZXjasmrEd2_Yi1deeE360zv5O
https://www.youtube.com/playlist?list=PLSE8ODhjZXjasmrEd2_Yi1deeE360zv5O

	Data Management
	Computer Science Terminology
	Database Systems Terminology

	Pointers to Additional Material

