Similarity Search in Large Databases Introduction to Similarity Search

Nikolaus Augsten

nikolaus.augsten@plus.ac.at Department of Computer Science University of Salzburg

WS 2023/24

Version October 11, 2023

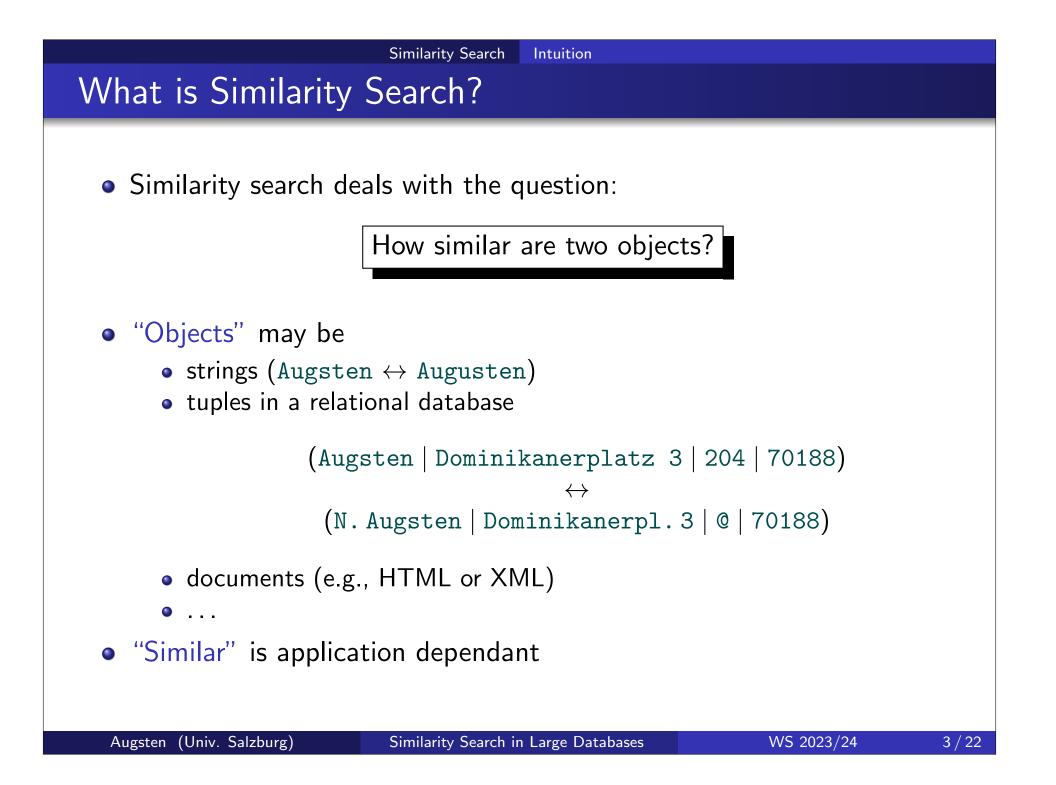
Augsten (Univ. Salzburg)

Similarity Search in Large Databases

1/22

Outline

- Intuition
- Applications
- Framework



Application I: Entity Resolution (ER)

• Problem: (also known as "object identification")

- Two data items represent the same real world object/entity (e.g., the same person),
- but they are represented differently in the database(s).
- How can this happen?
 - different coding conventions (e.g., Gilmstrasse, Hermann-von-Gilm-Str.)
 - spelling mistakes (e.g., Untervigil, Untervigli)
 - outdated values (e.g., Siegesplatz used to be Friedensplatz).
 - incomplete/incorrect values (e.g., missing or wrong apartment number in residential address).

• Focus in this course!

Application I: Flavors of Entity Resolution

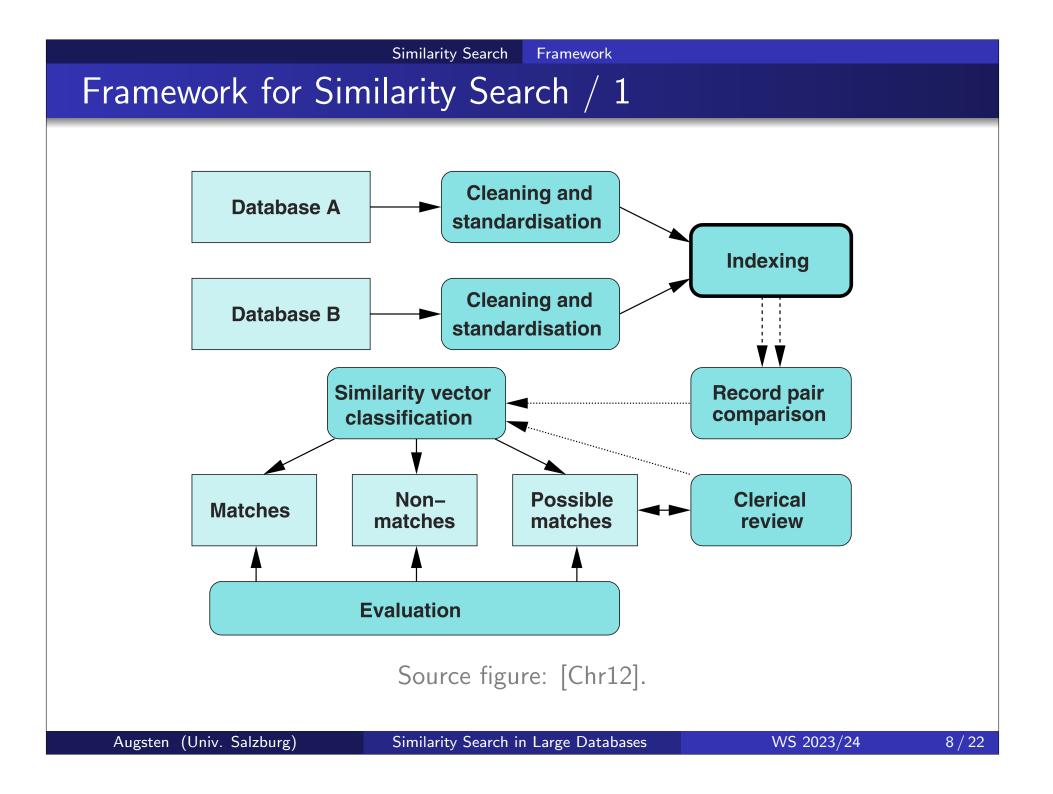
- Duplicate Detection (also: "dirty ER")
 - one table
 - find all tuples in the table that represent the same thing in the real world
 - Example: Two companies merge and must build a single customer database.
- Similarity Join (also: "clean-clean ER")
 - two tables
 - join all tuples with similar values in the join attributes
 - Example: In order to detect tax fraud, data from different databases need to be linked.
- Similarity Lookup
 - one table, one tuple
 - find the tuple in the table that matches the given tuple best
 - Example: Do we already have customer X in the database?

Application II: Computational Biology

- DNA and protein sequences
 - modelled as text over alphabet (e.g. $\{A, C, G, T\}$ in DNA)
- Application: Search for a pattern in the text
 - look for given feature in DNA
 - compare two DNAs
 - decode DNA
- Problem: Exact matches fail
 - experimental measures have errors
 - small changes that are not relevant
 - mutations
- Solution: Similarity search
 - Search for *similar* patterns
 - *How similar* are the patterns that you found?

Application III: Error Correction in Signal Processing

- Application: Transmit text signal over physical channel
- Problem: Transmission may introduce errors
- Goal: Restore original (sent) message
- Solution: Find correct text that is closest to received message.



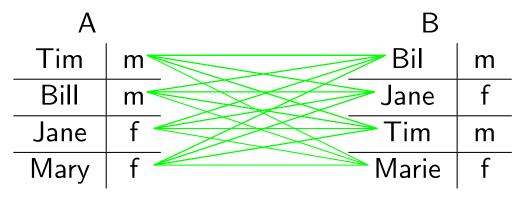
Framework for Similarity Search / 2

1. Preprocessing: Cleaning and standardization, e.g.

- lowercase all values: Augsten \rightarrow augsten
- standardize values: $\{f, w, female, weiblich\} \rightarrow \{f\}$
- standardize encoding: K.Wolf Strasse \rightarrow Karl-Wolf-Str.
- 2. Indexing for Search Space Reduction
 - blocking
 - sorted-neighborhood
 - filter ing (pruning)
 - nearest neighbor search
- 3. Compute Distances
 - compare record/tuple pairs
- 4. Find Matches: Classification
 - classify record/tuple pairs based on a distance or a vector of distances

Search Space Reduction: Brute Force

- We consider the example of similarity join.
- Similarity Join: Find all pairs of similar tuples in tables A and B.
 - Search space: $A \times B$ (all possible pairs of tuples)
 - Complexity: compute |A||B| distances \rightarrow expensive! (|A| = 30k, |B| = 40k, 1ms per distance \Rightarrow join will run for 2 weeks)
- Example: 16 distance computations!



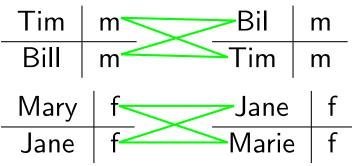
• Goal: Reduce search space!

Search Space Reduction: Blocking

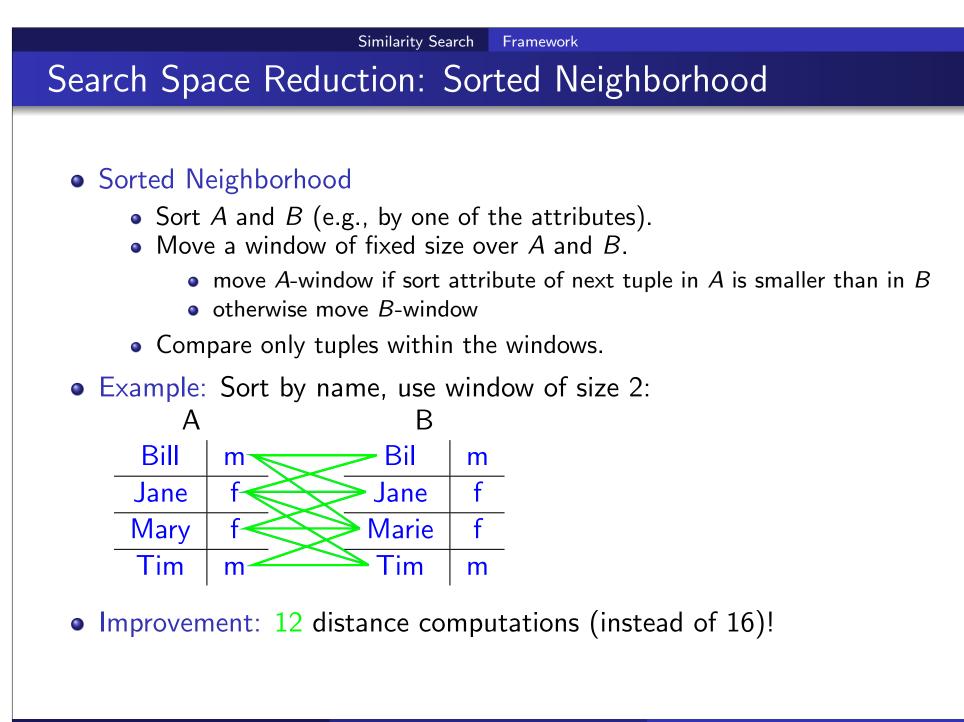
- Blocking
 - Generate blocks for A and B (seperately):
 - 1. compute one or more block keys for each tuple
 - 2. each distinct block key represents one block
 - 3. assign each tuple to all blocks of its block keys
 - Compare only tuples of block pairs with the same block key.

• Example: Attribute blocking: block key is value of a chosen attribute.

Block by "gender" attribute:



• Improvement: 8 distance computations (instead of 16)!

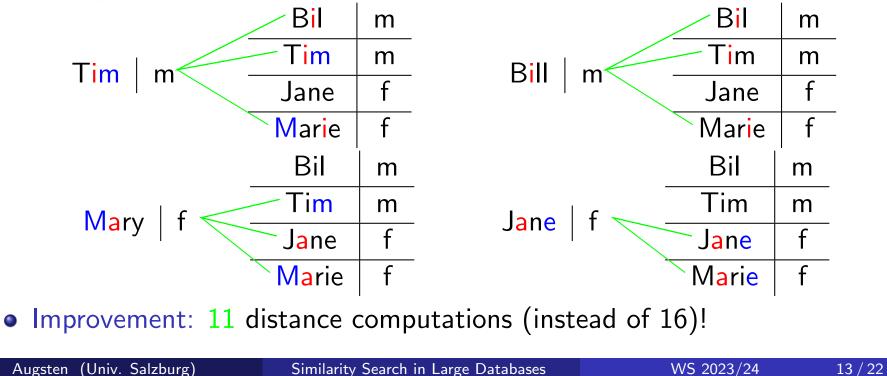


12 / 22

Search Space Reduction: Filtering

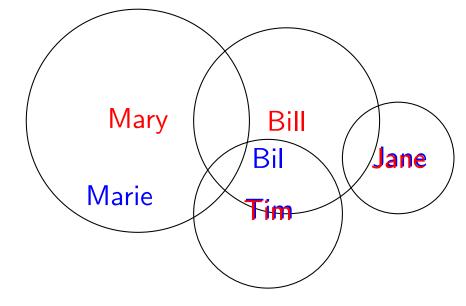
• Filtering (Pruning)

- Filter: quick check if tuple pair is "promising" (i.e., distance is expected to be small enough).
- Do not compute distance function if filter check fails.
- Idea: filter is faster than distance function. Overhead for filtering is amortized by avoided distance computations.
- Example: Do not match names that have no character in common:



Search Space Reduction: Nearest-Neighbor Search

- Represent tuples in some vector space or metric space.
- For each tuple *t* in *A*:
 - search for all tuples in B that are close to tuple t of A
 - distance to t is evaluated only for these tuples of B
- Example: Search for tuples of *A* in tuples of *B*.



• Improvement: 6 distance computations (instead of 16)!

Distance Computation

Definition (Distance Function)

Given two sets of objects, A and B, a *distance function* for A and B maps each pair $(a, b) \in A \times B$ to a positive real number (including zero).

 $\delta: A \times B \to \mathbb{R}^+_0$

- We will define distance functions for
 - sets
 - strings
 - trees

Distance Matrix

Definition (Distance Matrix)

Given a distance function δ for two sets of objects, $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_m\}$. The *distance matrix* D is an $n \times m$ -matrix with

$$d_{ij} = \delta(a_i, b_j),$$

where d_{ij} is the element at the *i*-th row and the *j*-th column of *D*.

• Example distance matrix, $A = \{a_1, a_2, a_3\}$, $B = \{b_1, b_2, b_3\}$:

	Similarity S	Search	Frame	ework			
Finding Matches							
		b_1	b_2	b_3			
	a_1		5		·		
	<i>a</i> 2	2	2 3	1			
	<i>a</i> 3	1	3	0			

- Once we know the distances which objects match?
- Distance matrix and search space reduction:
 - matrix may be only partially filled at the time of computing matches
 - missing distance values are treated as infinite

Finding Matches: Threshold Matching

Similarity Search

	b_1	b_2	<i>b</i> ₃
a_1	6	5	4
a_2	2	2	1
a ₃	1	3	0

Framework

• Threshold Approach:

- fix threshold τ
- $\bullet\,$ for a given object, all objects with a distance range of $\tau\,$ are matched
- Algorithm: produces *n*:*m* matching

foreach $d_{ij} \in D$ do if $d_{ij} \leq \tau$ then match (a_i, b_j)

• Example with $\tau = 2$: {(a_2, b_1), (a_2, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_3)}

Finding Matches: k-Nearest Neighbor Matching

Similarity Search

	b_1	b_2	<i>b</i> ₃
a_1	6	5	4
<i>a</i> 2	2	2	1
a ₃	1	3	0

Framework

- k-Nearest-Neighbor (kNN) Matching:
 - fix number of neighbors k
 - for a given object, form a match with its k nearest neighbors
- Algorithm: produces 1:k matching

foreach row *i* of distance matrix *D* do

find column IDs c_1, c_2, \ldots, c_k of k smallest values in row i of D form k matches $(a_i, b_{c_1}), (a_i, b_{c_2}), \ldots, (a_i, b_{c_k})$

• Properties:

- not symmetric: transposed matrix D^T may give a different result
- ties affect the matching (only for k-th neighbor)
- Example k = 2: {(a_1, b_3), (a_1, b_2), (a_2, b_3), (a_2, b_1), (a_3, b_3), (a_3, b_1)}

Finding Matches: Global Greedy

 Global Greedy Approach • form object pair with smallest distance first matched objects are removed • Algorithm: produces 1:1 matching $M \leftarrow \emptyset$ $A \leftarrow \{a_1, a_2, \dots, a_n\}; B \leftarrow \{b_1, b_2, \dots, b_m\}$ create sorted list *L* with all $d_{ii} \in D$ while $A \neq \emptyset$ and $B \neq \emptyset$ do $d_{ii} \leftarrow$ deque smallest element from L if $a_i \in A$ and $b_i \in B$ then $M \leftarrow M \cup (a_i, b_i)$ remove a_i from A and b_i from B return M • Properties: must deal with ties when sorting list L, e.g., sort ties randomly, sort ties by i and j

• Example (sort ties by i, j): $\{(a_3, b_3), (a_2, b_1), (a_1, b_2)\}$

	b_1	b_2	<i>b</i> ₃
a_1	6	5	4
a_2	2	2	1
<i>A</i> 2	1	3	0

Overview: Matching Techniques

• Threshold Matching:

- all objects with distance within au match
- *n*:*m*-matching
- symmetric, not affected by ties
- *k*-Nearest Neighbor Matching:
 - each object is matched to its k closest objects
 - 1:*k*-matching
 - not symmetric, affected by ties
- Global Greedy Approach:
 - pair with smallest distance is matched first and removed
 - 1:1-matching
 - symmetric, affected by ties

Conclusion

• Framework for similarity queries:

- 1. Preprocessing: Cleaning and standardization
- 2. Indexing for Search Space Reduction
 - blocking
 - sorted-neighborhood
 - filtering (pruning)
 - nearest neighbor search
- 3. Compute Distances
- 4. Find Matches: Classification
 - threshold-based
 - k-nearest-neighbor
 - global greedy

Peter Christen.

A survey of indexing techniques for scalable record linkage and deduplication.

IEEE Trans. Knowl. Data Eng., 24(9):1537–1555, 2012.