

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Lower Bound

Theorem (Lower Bound)

If the trees are at tree edit distance k, then the string edit distance between their preorder and postorder traversals is at most k.

Proof.

Tree operations map to string operations (illustration on next slide):

• Insertion (ins(v, p, k, m)): Let $t_1 \dots t_f$ be the subtrees rooted in the children of p. Then the preorder traversal of the subtree rooted in p is $p \operatorname{pre}(t_1) \dots \operatorname{pre}(t_{k-1}) \operatorname{pre}(t_k) \dots \operatorname{pre}(t_{k+m-1}) \operatorname{pre}(t_{k+m}) \dots \operatorname{pre}(t_f).$ Inserting v moves the subtrees k to m:

 $ppre(t_1) \dots pre(t_{k-1}) \vee pre(t_k) \dots pre(t_{k+m-1}) pre(t_{k+m}) \dots pre(t_f).$

The string distance is 1. Analog rationale for postorder.

- Deletion: Inverse of insertion.
- Rename: With node rename a single string character is renamed. Similarity Search

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Lower Bound

Augsten (Univ. Salzburg)

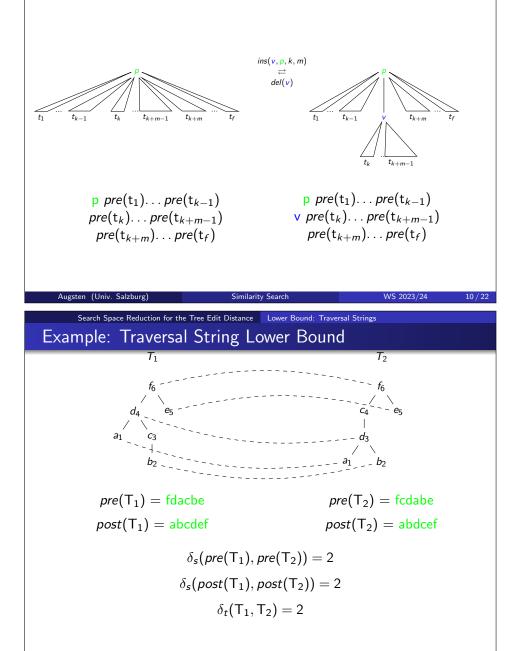
• From the lower bound theorem it follows that

 $\max(\delta_{s}(pre(T_{1}), pre(T_{2})), \delta_{s}(post(T_{1}), post(T_{2}))) \leq \delta_{t}(T_{1}, T_{2})$

where δ_s and δ_t are the string and the tree edit distance, respectively.

- The string edit distance can be computed faster:
 - string edit distance runtime: $O(n^2)$
 - tree edit distance runtime: $O(n^3)$
- Similarity join: match all trees with $\delta_t(T_1, T_2) < \tau$
 - if $\max(\delta_s(pre(\mathsf{T}_1), pre(\mathsf{T}_2)), \delta_s(post(\mathsf{T}_1), post(\mathsf{T}_2))) > \tau$ then $\delta_t(\mathsf{T}_1,\mathsf{T}_2) > \tau$
 - thus we do not have to compute the expensive tree edit distance

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings Illustration for the Lower Bound Proof (Preorder)



WS 2023/24

9/22

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance Example: Traversal String Lower Bound Outline • The string distances of preorder and postorder may be different. • The string distances and the tree distance may be different. T_1 T_2 Search Space Reduction for the Tree Edit Distance • Similarity Join and Search Space Reduction а а • Lower Bound: Traversal Strings /• Upper Bound: Constrained Edit Distance b а b С а С $pre(T_2) = abac$ $pre(T_1) = abac$ 2 Conclusion $\delta_s(pre(\mathsf{T}_1), pre(\mathsf{T}_2)) = 0 \quad post(\mathsf{T}_2) = acba$ $post(T_1) = bcaa$ $\delta_s(post(T_1), post(T_2)) = 2$ $\delta_t(T_1, T_2) = 3$ WS 2023/24 WS 2023/24 Augsten (Univ. Salzburg) Similarity Search 13/22 Augsten (Univ. Salzburg) Similarity Search 14 / 22 Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance Edit Mapping **Constrained Edit Distance** • Recall the definition of the edit mapping: • We compute a special case of the edit distance to get a faster Definition (Edit Mapping) algorithm. An edit mapping M between T_1 and T_2 is a set of node pairs that satisfy • *lca*(a, b) is the lowest common ancestor of a and b. the following conditions: • Additional requirement on the mapping *M*: (1) $(a, b) \in M \Rightarrow a \in N(T_1), b \in N(T_2)$ (4) for any pairs (a_1, b_1) , (a_2, b_2) , (x, y) of M: (2) for any two pairs (a, b) and (x, y) of M: $lca(a_1, a_2)$ is a proper ancestor of x (i) $a = x \Leftrightarrow b = y$ (one-to-one condition) (ii) a is to the left of $x^1 \Leftrightarrow b$ is to the left of y $lca(b_1, b_2)$ is a proper ancestor of y. (order condition) (iii) a is an ancestor of $x \Leftrightarrow b$ is an ancestor of y • Intuition: Distinct subtrees of T_1 are mapped to distinct subtrees of (ancestor condition) T₂. ¹i.e., a precedes \times in both preorder and postorder Augsten (Univ. Salzburg) WS 2023/24 WS 2023/24 16 / 22 Similarity Search Augsten (Univ. Salzburg) Similarity Search

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Example: Constrained Edit Distance

$T_1 T_2$ $a T_1 T_2$ $a T_1 T_2$ $a T_1 T_2$ $a T_2 T_2$

- Constrained edit distance (dashed lines): $\delta_c(T_1, T_2) = 5$
 - constrained mapping $M_c = \{(a, a), (d, d), (c, i), (f, f)(g, g)\}$

Similarity Search

- edit sequence: ren(c, i), del(b), del(e), ins(h), ins(e)
- Unconstrained edit distance (dotted lines): $\delta_t(T_1, T_2) = 3$
 - mapping $M_t = \{(a, a), (d, d), (e, e), (c, i), (f, f)(g, g)\}$
 - edit sequence: ren(c, i), del(b), ins(h)

Augsten (Univ. Salzburg)

WS 2023/24

17 / 22

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance Complexity of the Constrained Edit Distance

Theorem (Complexity of the Constrained Edit Distance)

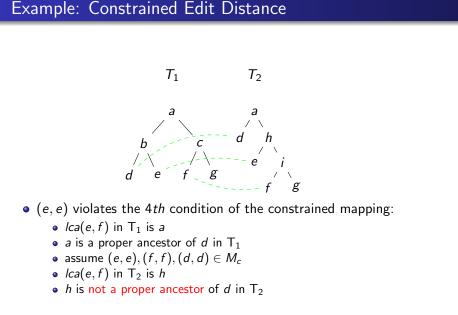
Let T_1 and T_2 be two trees with $|T_1|$ and $|T_2|$ nodes, respectively. There is an algorithm that computes the constrained edit distance between T_1 and T_2 with runtime

$O(|\mathsf{T}_1||\mathsf{T}_2|).$

Proof.

See [Zha95, GJK⁺02].

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance



Similarity Search

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Constrained Edit Distance: Upper Bound

Theorem (Upper Bound)

Augsten (Univ. Salzburg)

Let T_1 and T_2 be two trees, let $\delta_t(T_1, T_2)$ be the unconstrained and $\delta_c(T_1, T_2)$ be the constrained tree edit distance, respectively. Then

$\delta_t(\mathsf{T}_1,\mathsf{T}_2) \leq \delta_c(\mathsf{T}_1,\mathsf{T}_2)$

Proof.

See [GJK⁺02].

WS 2023/24

WS 2023/24

18/22

