Similarity Search Token-Based Tree Distances

Nikolaus Augsten

nikolaus.augsten@plus.ac.at
Department of Computer Science
University of Salzburg

WS 2022/23

Version January 17, 2023

Similarity Search

Tokens for Trees – Intuition

- *q*-Grams for strings:
 - split string into substrings (q-grams) of length q
 - strings with many common substrings are similar
- Tokens for trees:
 - split tree into small subunits (tokens) of the same shape
 - tokens may be individual nodes, subtrees, or subgraphs
 - trees with many common tokens are similar
- Example: the so-called pq-gram tokens are besom-shaped subtrees with p + q nodes

$$\lambda(t) = (\lambda(v_1), \lambda(v_2), \dots, \lambda(v_k))$$

Token-Based Distance

Definition (Token-Based Distance)

The token-based distance between two trees, T and T', with token indexes $\mathcal{I}(T)$ and $\mathcal{I}(T')$, respectively, is defined as

 $\delta(\mathsf{T},\mathsf{T}') = |\mathcal{I}(\mathsf{T}) \uplus \mathcal{I}(\mathsf{T}')| - 2|\mathcal{I}(\mathsf{T}) \cap \mathcal{I}(\mathsf{T}')|$

- Metric normalization to [0..1]: $\delta'_{g}(\mathsf{T},\mathsf{T}') = \frac{\delta_{g}(\mathsf{T},\mathsf{T}')}{|\mathcal{I}(\mathsf{T}) \uplus \mathcal{I}(\mathsf{T}')| |\mathcal{I}(\mathsf{T}) \oplus \mathcal{I}(\mathsf{T}')|}$
- Pseudo-metric properties hold for normalization [ABG10]:
 - ✓ self-identity: $x = y \neq \Rightarrow \delta_g(x, y) = 0$
 - ✓ symmetry: $\delta_g(x, y) = \delta_g(y, x)$
 - ✓ triangle inequality: $\delta_g(x,z) \le \delta_g(x,y) + \delta_g(y,z)$
- Different trees may have identical indexes.

7 / 43

Binary Tree

• In a binary tree

- each node has at most two children;
- left child and right child are distinguished:
 a node can have a right child without having a left child;
- Notation: $T_B = (N, E_I, E_r)$
 - T_B denotes a binary tree
 - *N* are the nodes of the binary tree
 - E_l and E_r are the edges to the left and right children, respectively

• Full binary tree:

- binary tree
- each node has exactly zero or two children.

Binary Branches

Example: Binary Tree

• Two different binary trees: $T_B = (N, E_I, E_r)$

 $T_{B1} = (\{a, b, c, d, e, f, g\}, \{(a, b), (b, c), (d, e), (e, f)\}, \{(a, d), (e, g)\})$ $T_{B2} = (\{a, b, c, d, e, f, g\}, \{(a, b), (b, c), (e, f)\}, \{(a, d), (d, e), (e, g)\})$

• A full binary tree:

Binary Representation of a Tree

• Binary tree transformation:

- (i) link all neighboring siblings in a tree with edges
- (ii) delete all parent-child edges except the edge to the first child

• Transformation maintains

- label information
- structure information
- Original tree can be reconstructed from the binary tree:
 - a left edge represents a parent-child relationships in the original tree
 - a right edge represents a right-sibling relationship in the original tree

Normalized Binary Tree Representation

- We extend the binary tree with null nodes ϵ as follows:
 - a null node for each missing left child of a non-null node
 - a null node for each missing right child of a non-null node
- Note: Leaf nodes get two null-children.
- The resulting normalized binary representation
 - is a full binary tree
 - all non-null nodes have two children
 - all leaves are null nodes (and all null nodes are leaves)

Binary Branch

- A binary branch *BiB*(v) is
 - a subtree of the normalized binary tree B(T)
 - consisting of a non-null node v and its two children

Binary Branches

• Example:

 $BiB(a) = (\{a, b, \epsilon\}, \{(a, b)\}, \{(a, \epsilon)\})$ BiB(d) = ({d, \epsilon_1, \epsilon_2}, {(d, \epsilon_1)}, {(d, \epsilon_2)})¹

¹Although the two null nodes have identical labels (ϵ), they are different nodes. We emphasize this by showing their IDs in subscript.

Binary Branches

Binary Branches of Trees and Datasets

- Binary branches can be serialized as label tuples:
 - $BiB(v) = (\{v, a, b\}, \{(v, a)\}, \{(v, b)\}) \rightarrow \lambda(v) \circ \lambda(a) \circ \lambda(b)$
- Binary branch profile and index:
 - $P_{bb}(T)$ is the set of all binary branches of T
 - $\mathcal{I}_{bb}(\mathsf{T})$ is the multiset of all binary branch label tuples of T

• Note:

- nodes are unique in the tree, thus binary branches are unique
- labels are *not* unique, thus the label tuples are *not* unique
- Binary branch distance: The binary branch distance between two trees T₁ and T₂ is defined as:

$$\delta_{bb}(\mathsf{T}_1,\mathsf{T}_2) = |\mathcal{I}_{bb}(\mathsf{T}_1) \uplus \mathcal{I}_{bb}(\mathsf{T}_2)| - 2|\mathcal{I}_{bb}(\mathsf{T}_1) \oplus \mathcal{I}_{bb}(\mathsf{T}_2)|$$

17 / 43

Lower Bound Theorem

Theorem (Lower Bound)

Let T_1 and T_2 be two trees. If the tree edit distance between T_1 and T_2 is $\delta_t(T_1, T_2)$, then the binary branch distance between them satisfies

 $\delta_{bb}(\mathsf{T}_1,\mathsf{T}_2) \leq 5 \times \delta_t(\mathsf{T}_1,\mathsf{T}_2).$

Proof (Sketch — Full Proof in [YKT05]).

- Each node v appears in at most two binary branches.
- *Rename*: Renaming a node causes at most two binary branches in each tree to mismatch. The sum is 4.
- Similar rational for *insert* and its complementary operation *delete* (at most 5 binary branches mismatch).

Proof Sketch

• In general it can be shown that

- Rename changes at most 4 binary branches
- Insert changes at most 5 binary branches
- Delete changes at most 5 binary branches
- Each edit operation changes at most 5 binary branches, thus

 $\delta_{bb}(\mathsf{T}_1,\mathsf{T}_2) \leq 5 \times \delta_t(\mathsf{T}_1,\mathsf{T}_2).$

Complexity: Binary Branch Distance

Generating the binary branches: O(n) time and space (n = max{|T₁|, |T₂|})

- the binary branches are formed in a single traversal of the tree
- for each node of a tree a single binary branch is formed
- Computing the distance: $O(n \log n)$ time and O(n) space
 - sort binary branch indexes to compute intersection: $O(n \log n)$
 - alternative: average case O(n) runtime complexity
 - 1. build hash map for index $\mathcal{I}_{bb}(T_2)$
 - 2. probe label tuples of $\mathcal{I}_{bb}(\mathcal{T}_1)$ to compute size of intersection

25 / 43

Definition: pq-Gram [ABG05]

Definition (*pq*-Gram)

Let T be a tree, $T^{p,q}$ the respective extended tree, p > 0, q > 0. A subtree of $T^{p,q}$ is a pq-gram g of T iff

- (a) g has q leaf nodes and p non-leaf nodes,
- (b) all leaf nodes of g are children of a single node $a \in N(g)$ with fanout q, called the anchor node,
- (c) the leaf nodes of g are consecutive siblings in $T^{p,q}$.
 - Stem: anchor node and its ancestors in the *pq*-gram.
 - Base: children of the anchor node in the *pq*-gram.

Definition (pq-Gram Profile)

The pq-gram profile, P_T , of a tree T is the set of all its pq-grams.

- pq-Gram: small subtree with stem and base Example: p = 2, q = 3
- Systematically split tree into *pq*-grams

P(T)

stem

а

b

е

base

а

• *pq*-Gram profile: set of all *pq*-grams of a tree.

*

Similarity Search

а

а

/ |

29 / 43

pq-Gram Index

Definition (*pq*-Gram Index)

Let T be a tree with profile P_T, p > 0, q > 0. The pq-gram index, \mathcal{I} , of tree T is the **bag of all label tuples** of T,

$$\mathcal{I}(\mathsf{T}) = \biguplus_{g \in \mathsf{P}_{\mathsf{T}}} \lambda(g)$$

• Note:

- *pq*-grams are unique within a tree
- but: different pq-grams may yield identical label tuples
- thus the *pq*-gram index may contain duplicates

Size of the *pq*-Gram Index

Theorem (Size of the *pq*-Gram Index)

Let T be a tree of size n = l + i with l leaves and i non-leaves. The size of the pq-gram index of T is linear in the tree size:

$$|\mathcal{I}^{pq}(\mathsf{T})| = 2l + qi - 1 = O(n)$$

Proof.

- 1. We count all pq-grams whose leftmost leaf is a dummy node: Each leaf is the anchor node of exactly one pq-gram whose leftmost leaf is a dummy node, giving l pq-grams. Each non-leaf is the anchor of q 1 pq-grams whose leftmost leaf is a dummy, giving i(q 1) pq-grams.
- 2. We count all *pq*-grams whose leftmost leaf is not a dummy node: Each node of the tree except the root is the leftmost leaf of exactly one *pq*-gram, giving l + i - 1 *pq*-grams.

Overall number of pq-grams: l + i(q - 1) + (l + i - 1) = 2l + qi - 1.

The *pq*-Gram Distance

Definition (pq-Gram Distance)

The pq-gram distance between two trees, T and T', is defined as

$$\delta_{g}(\mathsf{T},\mathsf{T}') = |\mathcal{I}(\mathsf{T}) \uplus \mathcal{I}(\mathsf{T}')| - 2|\mathcal{I}(\mathsf{T}) \cap \mathcal{I}(\mathsf{T}')|$$

• Metric normalization to [0..1]: $\delta'_g(\mathsf{T},\mathsf{T}') = \frac{\delta_g(\mathsf{T},\mathsf{T}')}{|\mathcal{I}(\mathsf{T}) \uplus \mathcal{I}(\mathsf{T}')| - |\mathcal{I}(\mathsf{T}) \oplus \mathcal{I}(\mathsf{T}')|}$

• Pseudo-metric properties hold for normalization [ABG10]:

- ✓ self-identity: $x = y \not\Leftarrow \Rightarrow \delta_g(x, y) = 0$
- ✓ symmetry: $\delta_g(x, y) = \delta_g(y, x)$
- ✓ triangle inequality: $\delta_g(x,z) \le \delta_g(x,y) + \delta_g(y,z)$

• Different trees may have identical indexes:

Motivation: Unit Cost Model Not Always Intuitive

Fanout Weighted Tree Edit Distance

Definition (Fanout Weighted Tree Edit Distance)

Let T and T' be two trees, $w \in N(T)$ a node with fanout f, $w' \in N(T')$ a node with fanout f', c > 0 a constant. The fanout weighted tree edit distance, $\delta_f = (T, T')$, between T and T' is defined as the tree edit distance with the following costs for the edit operations:

- Delete: $\alpha(\mathsf{w} \to \epsilon) = f + c$
- Insert: $\alpha(\epsilon \rightarrow w') = f' + c$
- Rename: $\alpha(\mathsf{w} \to \mathsf{w}') = (f + f')/2 + c$
- Cost of changing a non-leaf node: proportional to its fanout.
- Cost of changing a leaf node: constant *c*.

pq-Gram Distance Lower Bound

Theorem

Let p = 1 and $c \ge \max(2q - 1, 2)$ be the cost of changing a leaf node. The pq-gram distance provides a lower bound for the fanout weighted tree edit distance, i.e., for any two trees, T and T',

$$\frac{\delta_g(\mathsf{T},\mathsf{T}')}{2} \leq \delta_f(\mathsf{T},\mathsf{T}').$$

Proof.

See [ABG10] (ACM Transactions on Database Systems).

Size of the *pq*-Gram Index

- pq-Gram index size: linear in the tree size
- Experiment:
 - compute *pq*-gram index for trees with different number of nodes
 - compare tree and index size

Why is the *pq*-gram index smaller than the tree?

- hash values are smaller than labels
- duplicate *pq*-grams of a tree are stored only once

Influence of *p* and *q* on Scalability

- Scalability (almost) independent of p and q.
- Experiment: For pair of trees
 - compute *pq*-gram distance for varying *p* and *q*
 - vary tree size: up 10^6 nodes
 - measure wall clock time

40 / 43

Scalability to Large Trees

- pq-gram distance \rightarrow scalable to large trees
- compare with edit distance
- Experiment: For pair of trees
 - compute tree edit distance and *pq*-gram distance
 - $\bullet\,$ vary tree size: up 5×10^5 nodes
 - measure wall clock time

pq-Grams vs. other Edit Distance Approximations

Effectiveness: *pq*-grams outperform all other approximations

Experiment: two sets of address trees (299 and 302 trees)

- compute distances between all tree pairs
- find matches (symmetric nearest neighbor)

Distance	Correct	Recall	Precision	f-Measure	Runtime
fanout edit dist	259	86.6%	98.5%	0.922	19 min
unit edit dist	247	82.6%	96.5%	0.890	14 min
node intersection	197	65.9%	93.8%	0.774	4.3s
p,q-grams	236	78.9%	98.7%	0.877	8.1s
tree-embedding	206	68.9%	96.3%	0.803	7.1s
binary branch	193	64.5%	93.2%	0.763	7.4s
bottom-up	148	49.6%	92.5%	0.645	67.0s

Summary

• Binary Branch Distance

- lower bound of the unit cost tree edit distance
- trees are split into binary branches (small subgraphs)
- similar trees have many common binary branches
- complexity $O(n \log n)$ time and (n) space

• pq-Gram Distance

- lower bound for the fanout weighted tree edit distance
- trees are split into pq-grams (small subtrees)
- similar trees have many common pq-grams
- complexity $O(n \log n)$ time and O(n) space

- Nikolaus Augsten, Michael Böhlen, and Johann Gamper.
 Approximate matching of hierarchical data using *pq*-grams.
 In *Proceedings of the International Conference on Very Large Databases (VLDB)*, pages 301–312, Trondheim, Norway, September 2005. ACM Press.
- Nikolaus Augsten, Michael Böhlen, and Johann Gamper.
 The pq-gram distance between ordered labeled trees.
 ACM Transactions on Database Systems (TODS), 35(1):1–36, 2010.
- Richard M. Karp and Michael O. Rabin.
 Efficient randomized pattern-matching algorithms.
 IBM Journal of Research and Development, 31(2):249–260, March 1987.
- Rui Yang, Panos Kalnis, and Anthony K. H. Tung. Similarity evaluation on tree-structured data.

In *Proceedings of the ACM SIGMOD International Conference on Management of Data*, pages 754–765, Baltimore, Maryland, USA, June 2005. ACM Press.

Augsten (Univ. Salzburg)

Similarity Search