Similarity Search
 Token-Based Tree Distances

Nikolaus Augsten
nikolaus.augsten@plus.ac.at
Department of Computer Science
University of Salzburg

research group
https://dbresearch.uni-salzburg.at

WS 2022/23
Version January 17, 2023

Outline

(1) Token-based Tree Distances
(2) Binary Branches
(3) pq-Grams
(4) Conclusion

Tokens for Trees - Intuition

- q-Grams for strings:
- split string into substrings (q-grams) of length q
- strings with many common substrings are similar
- Tokens for trees:
- split tree into small subunits (tokens) of the same shape
- tokens may be individual nodes, subtrees, or subgraphs
- trees with many common tokens are similar
- Example: the so-called $p q$-gram tokens are besom-shaped subtrees with $p+q$ nodes

Token Profile and Label Tuples

- Token profile $P(T)$: set of all tokens of tree T
- a token may be a subtree or a subgraph of the tree
- the token profile $P(T)$ of a tree T is the set of all its tokens
- A linear encoding of a token traverses all its nodes in preorder:

- Label tuple $\lambda(t)$: tuple of the nodes labels $\lambda\left(v_{i}\right)$ of token $t=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{k}\right)$ in preorder:

$$
\lambda(t)=\left(\lambda\left(\mathrm{v}_{1}\right), \lambda\left(\mathrm{v}_{2}\right), \ldots, \lambda\left(\mathrm{v}_{k}\right)\right)
$$

Token Index

Definition (Token Index)

Let $P(T)$ be a token profile of tree T. The token index, \mathcal{I}, of tree T is the bag of all label tuples of T,

$$
\mathcal{I}(\mathrm{T})=\biguplus_{g \in \mathrm{P}_{\mathrm{T}}} \lambda(g)
$$

- Note:
- tokens consist of nodes and are unique within a tree
- but: different tokens may yield identical label tuples
- thus the token index may contain duplicates

Token-Based Distance

Definition (Token-Based Distance)

The token-based distance between two trees, T and T^{\prime}, with token indexes $\mathcal{I}(\mathrm{T})$ and $\mathcal{I}\left(T^{\prime}\right)$, respectively, is defined as

$$
\delta\left(\mathrm{T}, \mathrm{~T}^{\prime}\right)=\left|\mathcal{I}(\mathrm{T}) \uplus \mathcal{I}\left(\mathrm{T}^{\prime}\right)\right|-2\left|\mathcal{I}(\mathrm{~T}) \oplus \mathcal{I}\left(\mathrm{T}^{\prime}\right)\right|
$$

- Metric normalization to $[0.1]: \delta_{g}^{\prime}\left(\mathrm{T}, \mathrm{T}^{\prime}\right)=\frac{\delta_{g}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right)}{\left|\mathcal{I}(\mathrm{T}) \uplus \mathcal{I}\left(\mathrm{T}^{\prime}\right)\right|-\left|\mathcal{I}(\mathrm{T}) \uparrow \mathcal{I}\left(\mathrm{T}^{\prime}\right)\right|}$
- Pseudo-metric properties hold for normalization [ABG10]:
\checkmark self-identity: $x=y \nLeftarrow \Rightarrow \delta_{g}(x, y)=0$
\checkmark symmetry: $\delta_{g}(x, y)=\delta_{g}(y, x)$
\checkmark triangle inequality: $\delta_{g}(x, z) \leq \delta_{g}(x, y)+\delta_{g}(y, z)$
- Different trees may have identical indexes.

Storing the Token Index Efficiently

- Problem: How to store node labels efficiently?
- Long labels: large storage overhead
- Varying label length: in a relational database, the inefficient VARCHAR type must be used instead of the efficient CHAR type
- Solution: Hashing
- compute fingerprint hash for labels
- store concatenation of the hashed labels
- Fingerprint hash function (e.g., Karp-Rabin [KR87]):
- maps a string s to a hash value $h(s)$
- $h(s)$ is of fixed length
- $h(s)$ is unique with high probability (for two different strings $s_{1} \neq s_{2}, h\left(s_{1}\right) \neq h\left(s_{2}\right)$ with high probability)

Overview: Token Index

- Token profile: (so-called $p q$-grams in the example, $p=2, q=3$)

- Hashing: map tokens to integers:

label I	$\mathrm{h}(\mathrm{I})$
$*$	0
a	3
b	7
c	6
e	4

Note: labels may be strings of arbitrary length!

- Token index: bag of hashed tokens

$$
\begin{aligned}
\mathcal{I}(\mathrm{T})= & \{03003,03037,03376,03760,03600,33004,33047, \\
& 33470,33700,37000,36000,34000,37000\}
\end{aligned}
$$

Intuition: similar trees have similar token indexes.

Binary Tree

- In a binary tree
- each node has at most two children;
- left child and right child are distinguished:
a node can have a right child without having a left child;
- Notation: $\mathrm{T}_{B}=\left(N, E_{l}, E_{r}\right)$
- T_{B} denotes a binary tree
- N are the nodes of the binary tree
- E_{I} and E_{r} are the edges to the left and right children, respectively
- Full binary tree:
- binary tree
- each node has exactly zero or two children.

Example: Binary Tree

- Two different binary trees: $\mathrm{T}_{B}=\left(N, E_{I}, E_{r}\right)$

$$
\begin{aligned}
& \mathrm{T}_{B 1}=(\{a, b, c, d, e, f, g\},\{(a, b),(b, c),(d, e),(e, f)\},\{(a, d),(e, g)\}) \\
& \mathrm{T}_{B 2}=(\{a, b, c, d, e, f, g\},\{(a, b),(b, c),(e, f)\},\{(a, d),(d, e),(e, g)\})
\end{aligned}
$$

- A full binary tree:

Binary Representation of a Tree

- Binary tree transformation:
(i) link all neighboring siblings in a tree with edges
(ii) delete all parent-child edges except the edge to the first child
- Transformation maintains
- label information
- structure information
- Original tree can be reconstructed from the binary tree:
- a left edge represents a parent-child relationships in the original tree
- a right edge represents a right-sibling relationship in the original tree

Example: Binary Tree Transformation

- Represent tree T as a binary tree:

Normalized Binary Tree Representation

- We extend the binary tree with null nodes ϵ as follows:
- a null node for each missing left child of a non-null node
- a null node for each missing right child of a non-null node
- Note: Leaf nodes get two null-children.
- The resulting normalized binary representation
- is a full binary tree
- all non-null nodes have two children
- all leaves are null nodes (and all null nodes are leaves)

Example: Normalized Binary Tree

- Transforming T to the normalized binary tree $B(\mathrm{~T})$:

\rightarrow
$B(T)$

Binary Branch

- A binary branch $\operatorname{BiB}(\mathrm{v})$ is
- a subtree of the normalized binary tree $B(\mathrm{~T})$
- consisting of a non-null node v and its two children
- Example:

$$
\begin{aligned}
& \operatorname{BiB}(a)=(\{a, b, \epsilon\},\{(a, b)\},\{(a, \epsilon)\}) \\
& \operatorname{BiB}(d)=\left(\left\{d, \epsilon_{1}, \epsilon_{2}\right\},\left\{\left(d, \epsilon_{1}\right)\right\},\left\{\left(d, \epsilon_{2}\right)\right\}\right)^{1}
\end{aligned}
$$

${ }^{1}$ Although the two null nodes have identical labels (ϵ), they are different nodes. We emphasize this by showing their IDs in subscript.

Binary Branches of Trees and Datasets

- Binary branches can be serialized as label tuples:
- $\operatorname{BiB}(\mathrm{v})=(\{\mathrm{v}, \mathrm{a}, \mathrm{b}\},\{(\mathrm{v}, \mathrm{a})\},\{(\mathrm{v}, \mathrm{b})\}) \rightarrow \lambda(\mathrm{v}) \circ \lambda(\mathrm{a}) \circ \lambda(\mathrm{b})$
- Binary branch profile and index:
- $P_{b b}(T)$ is the set of all binary branches of T
- $\mathcal{I}_{b b}(\mathrm{~T})$ is the multiset of all binary branch label tuples of T
- Note:
- nodes are unique in the tree, thus binary branches are unique
- labels are not unique, thus the label tuples are not unique
- Binary branch distance: The binary branch distance between two trees T_{1} and T_{2} is defined as:

$$
\delta_{b b}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=\left|\mathcal{I}_{b b}\left(\mathrm{~T}_{1}\right) \uplus \mathcal{I}_{b b}\left(\mathrm{~T}_{2}\right)\right|-2\left|\mathcal{I}_{b b}\left(\mathrm{~T}_{1}\right) \oplus \mathcal{I}_{b b}\left(\mathrm{~T}_{2}\right)\right|
$$

Example: Binary Branches and Label Tuples

- $\operatorname{BiB}\left(c_{1}\right) \neq \operatorname{BiB}\left(c_{4}\right):$
- $\operatorname{BiB}\left(c_{1}\right)=\left(\left\{c_{1}, \epsilon_{2}, d_{3}\right\},\left\{\left(c_{1}, \epsilon_{2}\right)\right\},\left\{\left(c_{1}, d_{3}\right)\right\}\right)$
- $\operatorname{BiB}\left(c_{4}\right)=\left(\left\{c_{4}, \epsilon_{5}, d_{6}\right\},\left\{\left(c_{4}, \epsilon_{5}\right)\right\},\left\{\left(c_{4}, d_{6}\right)\right\}\right)$
- Serialization of both, $\operatorname{BiB}\left(c_{1}\right)$ and $\operatorname{BiB}\left(c_{2}\right)$, is identical: ' $c \epsilon d$ '

Example: Binary Branch Distance

$$
\begin{aligned}
& \mathcal{I}_{b b}\left(T_{1}\right)=\{a b \epsilon, b c b, c \epsilon d, d \epsilon \epsilon, b c e, c \epsilon d, d \epsilon \epsilon, e \epsilon \epsilon\} \\
& \mathcal{I}_{b b}\left(T_{2}\right)=\{a b \epsilon, b c c, c \epsilon d, d \epsilon b, b e \epsilon, e \epsilon \epsilon, c \epsilon d, d \epsilon e, e \epsilon \epsilon\} \\
& \delta_{b b}\left(T_{1}, T_{2}\right)=17-2 \cdot 4=9
\end{aligned}
$$

Lower Bound Theorem

Theorem (Lower Bound)

Let T_{1} and T_{2} be two trees. If the tree edit distance between T_{1} and T_{2} is $\delta_{t}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)$, then the binary branch distance between them satisfies

$$
\delta_{b b}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right) \leq 5 \times \delta_{t}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right) .
$$

Proof (Sketch — Full Proof in [YKT05]).

- Each node v appears in at most two binary branches.
- Rename: Renaming a node causes at most two binary branches in each tree to mismatch. The sum is 4.
- Similar rational for insert and its complementary operation delete (at most 5 binary branches mismatch).

Proof Sketch: Illustration for Rename

- transform T_{1} to $\mathrm{T}_{2}: ~ r e n(c, x)$

- binary trees $B\left(\mathrm{~T}_{1}\right)$ and $B\left(\mathrm{~T}_{2}\right)$

- Two binary branches ($b \in c, c e g$) exist only in $B\left(\mathrm{~T}_{1}\right)$
- Two binary branches (bex, xeg) exist only in $B\left(T_{2}\right)$
- $\delta_{t}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=1$ (1 rename)
- $\delta_{b b}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=4$ (4 binary branches different)

Proof Sketch: Illustration for Insert

- transform T_{1} to T_{2} : ins $(x, a, 2,2)$

- binary trees $B\left(\mathrm{~T}_{1}\right)$ and $B\left(\mathrm{~T}_{2}\right)$

- Two binary branches (bєe, $f \in g$) exist only in $B\left(\mathrm{~T}_{1}\right)$
- Tree binary branches (b $\epsilon x, f \epsilon \epsilon$, xeg) exist only in $B\left(T_{2}\right)$
- $\delta_{t}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=1$ (1 insertion)
- $\delta_{b b}\left(T_{1}, T_{2}\right)=5$ (5 binary branches different)

Proof Sketch

- In general it can be shown that
- Rename changes at most 4 binary branches
- Insert changes at most 5 binary branches
- Delete changes at most 5 binary branches
- Each edit operation changes at most 5 binary branches, thus

$$
\delta_{b b}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right) \leq 5 \times \delta_{t}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)
$$

Complexity: Binary Branch Distance

- Generating the binary branches: $O(n)$ time and space $\left(n=\max \left\{\left|T_{1}\right|,\left|T_{2}\right|\right\}\right)$
- the binary branches are formed in a single traversal of the tree
- for each node of a tree a single binary branch is formed
- Computing the distance: $O(n \log n)$ time and $O(n)$ space
- sort binary branch indexes to compute intersection: $O(n \log n)$
- alternative: average case $O(n)$ runtime complexity

1. build hash map for index $\mathcal{I}_{b b}\left(T_{2}\right)$
2. probe label tuples of $\mathcal{I}_{b b}\left(T_{1}\right)$ to compute size of intersection

pq-Grams

- The shape of a $p q$-gram $(p=2, q=3)$:

- p nodes (anchor node and $p-1$ ancestors) form the stem
- q nodes (q consecutive children of the anchor node) form the base

pq-Extended Tree

- Problem: How can we split the following tree T into 2,3-grams?

- Solution: Extend tree T with dummy nodes (॰):
- $p-1$ ancestors to the root node
- $q-1$ children before the first and after the last child of each non-leaf
- q children for each leaf
- The result is the $p q$-extened tree $T^{p q}$.

Example: Extended Tree

- An example tree T and its extended tree $\mathrm{T}^{p q}(p=2, q=3)$:

2, 3-extended tree $T^{2,3}$

Definition: pq-Gram [ABG05]

Definition ($p q$-Gram)

Let T be a tree, $\mathrm{T}^{p, q}$ the respective extended tree, $p>0, q>0$. A subtree of $T^{p, q}$ is a $p q$-gram g of T iff
(a) g has q leaf nodes and p non-leaf nodes,
(b) all leaf nodes of g are children of a single node $a \in N(g)$ with fanout q, called the anchor node,
(c) the leaf nodes of g are consecutive siblings in $T^{p, q}$.

- Stem: anchor node and its ancestors in the pq-gram.
- Base: children of the anchor node in the pq-gram.

Definition ($p q$-Gram Profile)

The $p q$-gram profile, P_{T}, of a tree T is the set of all its $p q$-grams.

Example: Systematically Split Tree

- pq-Gram: small subtree with stem and base Example: $p=2, q=3$
- Systematically split tree into pq-grams
- $p q$-Gram profile: set of all $p q$-grams of a tree.

Label Tuples

- Linear encoding of a $p q$-gram g with anchor node v_{p} : (traverse $p q$-gram in preorder)
- Label tuple: tuple of the pq-gram's node labels

$$
\lambda(g)=\left(\lambda\left(v_{1}\right), \ldots, \lambda\left(v_{p+q}\right)\right)
$$

for the $p q$-gram $g=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{p+q}\right)$.

$p q$-Gram Index

Definition (pq-Gram Index)

Let T be a tree with profile $\mathrm{P}_{\mathrm{T}}, p>0, q>0$. The $p q$-gram index, \mathcal{I}, of tree T is the bag of all label tuples of T ,

$$
\mathcal{I}(\mathrm{T})=\biguplus_{g \in \mathrm{P}_{\mathrm{T}}} \lambda(g)
$$

- Note:
- pq-grams are unique within a tree
- but: different $p q$-grams may yield identical label tuples
- thus the $p q$-gram index may contain duplicates

Size of the $p q$-Gram Index

Theorem (Size of the pq-Gram Index)

Let T be a tree of size $n=I+i$ with I leaves and i non-leaves. The size of the $p q$-gram index of T is linear in the tree size:

$$
\left|\mathcal{I}^{p q}(\mathrm{~T})\right|=2 I+q i-1=O(n)
$$

Proof.

1. We count all pq-grams whose leftmost leaf is a dummy node: Each leaf is the anchor node of exactly one pq-gram whose leftmost leaf is a dummy node, giving / pq-grams. Each non-leaf is the anchor of $q-1$ $p q$-grams whose leftmost leaf is a dummy, giving $i(q-1) p q$-grams.
2. We count all $p q$-grams whose leftmost leaf is not a dummy node: Each node of the tree except the root is the leftmost leaf of exactly one $p q$-gram, giving $I+i-1 p q$-grams.
Overall number of $p q$-grams: $I+i(q-1)+(I+i-1)=2 I+q i-1$.

The pq-Gram Distance

Definition ($p q$-Gram Distance)

The $p q$-gram distance between two trees, T and T^{\prime}, is defined as

$$
\delta_{g}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right)=\left|\mathcal{I}(\mathrm{T}) \uplus \mathcal{I}\left(\mathrm{T}^{\prime}\right)\right|-2\left|\mathcal{I}(\mathrm{~T}) \oplus \mathcal{I}\left(\mathrm{T}^{\prime}\right)\right|
$$

- Metric normalization to $[0 . .1]: \delta_{g}^{\prime}\left(\mathrm{T}, \mathrm{T}^{\prime}\right)=\frac{\delta_{g}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right)}{\left|\mathcal{I}(\mathrm{T}) \uplus \mathcal{I}\left(\mathrm{T}^{\prime}\right)\right|-\left|\mathcal{I}(\mathrm{T}) \oplus \mathcal{I}\left(\mathrm{T}^{\prime}\right)\right|}$
- Pseudo-metric properties hold for normalization [ABG10]:
\checkmark self-identity: $x=y \nRightarrow \Rightarrow \delta_{g}(x, y)=0$
\checkmark symmetry: $\delta_{g}(x, y)=\delta_{g}(y, x)$
\checkmark triangle inequality: $\delta_{g}(x, z) \leq \delta_{g}(x, y)+\delta_{g}(y, z)$
- Different trees may have identical indexes:

Motivation: Unit Cost Model Not Always Intuitive

- Unit cost edit distance:
- no difference between leaves and non-leaves
- may lead to non-intuitive results
- Conclusion: Non-leaves should have more weight than leaves.

Fanout Weighted Tree Edit Distance

Definition (Fanout Weighted Tree Edit Distance)

Let T and T^{\prime} be two trees, $\mathrm{w} \in N(\mathrm{~T})$ a node with fanout $f, \mathrm{w}^{\prime} \in N\left(\mathrm{~T}^{\prime}\right)$ a node with fanout $f^{\prime}, c>0$ a constant. The fanout weighted tree edit distance, $\delta_{f}=\left(\mathrm{T}, \mathrm{T}^{\prime}\right)$, between T and T^{\prime} is defined as the tree edit distance with the following costs for the edit operations:

- Delete: $\alpha(w \rightarrow \epsilon)=f+c$
- Insert: $\alpha\left(\epsilon \rightarrow w^{\prime}\right)=f^{\prime}+c$
- Rename: $\alpha\left(w \rightarrow w^{\prime}\right)=\left(f+f^{\prime}\right) / 2+c$
- Cost of changing a non-leaf node: proportional to its fanout.
- Cost of changing a leaf node: constant c.

Example: Fanout-Weighted Tree Edit Distance

- Fanout-Weighted Tree Edit Distance:
- leaf changes have small cost ($c=1$ in the example)
- non-leaf changes cost proportional to the node fanout

$$
\delta_{t}=2
$$

$$
\delta_{t}=2
$$

$$
a \quad \delta_{f}=2
$$

pq-Gram Distance Lower Bound

Theorem

Let $p=1$ and $c \geq \max (2 q-1,2)$ be the cost of changing a leaf node. The pq-gram distance provides a lower bound for the fanout weighted tree edit distance, i.e., for any two trees, T and T^{\prime},

$$
\frac{\delta_{g}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right)}{2} \leq \delta_{f}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right)
$$

Proof.

See [ABG10] (ACM Transactions on Database Systems).

Size of the pq-Gram Index

- $p q$-Gram index size: linear in the tree size
- Experiment:
- compute pq-gram index for trees with different number of nodes
- compare tree and index size

Why is the $p q$-gram index smaller than the tree?

- hash values are smaller than labels
- duplicate $p q$-grams of a tree are stored only once
[Trees created with xmlgen.]

Sensitivity to Structure Change - Leaf

- Cost of leaf change \rightarrow depends only on q
- Experiment:
- delete leaf nodes
- measure normalized $p q$-gram distance

(Artificial tree with 144 nodes, 102 leaves, fanout 2-6 and depth 6 . Average over 100 runs.)

Sensitivity to Structure Change - Non-Leaf

- Cost for non-leaf change \rightarrow controlled by p
- Experiment:
- delete non-leaf nodes
- measure normalized $p q$-gram distance

(Artificial tree with 144 nodes, 102 leaves, fanout $2-6$ and depth 6 . Average over 100 runs.)

Influence of p and q on Scalability

- Scalability (almost) independent of p and q.
- Experiment: For pair of trees
- compute $p q$-gram distance for varying p and q
- vary tree size: up 10^{6} nodes
- measure wall clock time

Scalability to Large Trees

- pq-gram distance \rightarrow scalable to large trees
- compare with edit distance
- Experiment: For pair of trees
- compute tree edit distance and $p q$-gram distance
- vary tree size: up 5×10^{5} nodes
- measure wall clock time

pq-Grams vs. other Edit Distance Approximations

Effectiveness: pq-grams outperform all other approximations

Experiment: two sets of address trees (299 and 302 trees)

- compute distances between all tree pairs
- find matches (symmetric nearest neighbor)

Distance	Correct	Recall	Precision	f-Measure	Runtime
fanout edit dist	259	86.6%	98.5%	0.922	19 min
unit edit dist	247	82.6%	96.5%	0.890	14 min
node intersection	197	65.9%	93.8%	0.774	4.3 s
p,q-grams	236	78.9%	98.7%	0.877	8.1 s
tree-embedding	206	68.9%	96.3%	0.803	7.1 s
binary branch	193	64.5%	93.2%	0.763	7.4 s
bottom-up	148	49.6%	92.5%	0.645	67.0 s

Summary

- Binary Branch Distance
- lower bound of the unit cost tree edit distance
- trees are split into binary branches (small subgraphs)
- similar trees have many common binary branches
- complexity $O(n \log n)$ time and (n) space
- pq-Gram Distance
- lower bound for the fanout weighted tree edit distance
- trees are split into $p q$-grams (small subtrees)
- similar trees have many common $p q$-grams
- complexity $O(n \log n)$ time and $O(n)$ space

国 Nikolaus Augsten, Michael Böhlen, and Johann Gamper.
Approximate matching of hierarchical data using pq-grams.
In Proceedings of the International Conference on Very Large Databases (VLDB), pages 301-312, Trondheim, Norway, September 2005. ACM Press.

围 Nikolaus Augsten, Michael Böhlen, and Johann Gamper.
The $p q$-gram distance between ordered labeled trees.
ACM Transactions on Database Systems (TODS), 35(1):1-36, 2010.
R Richard M. Karp and Michael O. Rabin.
Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249-260, March 1987.

Rui Yang, Panos Kalnis, and Anthony K. H. Tung.
Similarity evaluation on tree-structured data.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 754-765, Baltimore, Maryland, USA, June 2005. ACM Press.

