Non-Standard Database Systems

Parallel Databases

Nikolaus Augsten

nikolaus.augsten@plus.ac.at
Department of Computer Science
University of Salzburg

[\ database
research group
https://dbresearch.uni-salzburg.at

Sommersemester 2024
Version 19. Marz 2024

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 1/47

Parallelism in Databases

Databases naturally lend themselves to parallelism:
e Parallel 1/0O: data can be partitioned across multiple disks.

o Parallel execution: execute individual relational operations in parallel
e e.g., sort, join, aggregation can be executed in parallel
e each processor can work independently on its own data partition

@ Queries are expressed at the logical level and in a high level language:
o SQL is declarative and is translated to relational algebra
o separation of logical and physical level makes parallelization easier

o Different queries can run in parallel:
e concurrency control takes care of conflicts

NSDB - Parallel Databases

Augsten (Univ. Salzburg)

Sommersemester 2024 3/47

Introduction

@ Parallel machines are becoming quite common and affordable
e prices of microprocessors, memory, and disks have dropped sharply
e recent desktop computers feature multiple processors and this trend is
projected to accelerate
@ Databases are growing
o large volumes of transaction data are collected and stored for later
analysis
o large objects like multimedia data are increasingly stored in databases
o Large-scale parallel database systems increasingly used for:
e storing large volumes of data
@ processing time-consuming decision-support queries
e providing high throughput for transaction processing

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 2/47

. Qutline

© /0 Parallelism
© Interquery Parallelism

© Intraquery Parallelism
@ Intraoperation Parallelism
@ Interoperation Parallelism

@ Query Optimization and System Design

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 4/47

1/O Parallelism

Outline

© /0 Parallelism

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 5/47

1/O Parallelism

Horizontal Partitioning

Let n be the number of disks.
@ Round-robin:
o send the j-th tuple inserted in the relation to disk i mod n.
@ Hash partitioning:
o choose one or more attributes A as the partitioning attributes
e choose hash function h with range 0...n—1
o send tuple t with hash value i = h(t[A]) to disk i
@ Range partitioning:
o choose one or more attributes A as the partitioning attributes
e choose a partitioning vector [vg, v1, ..., Va—2]
o tuples t with t[A] < v got to disk 0
o tuples with v; < t[A] < viy1 to to disk i+ 1
o tuples with v,—» < t[A] go to disk n — 1
e Example: with partitioning vector [5,11] on attribute A, a tuple t with
partitioning attribute value of t[A] = 2 will go to disk 0, a tuple with
t[A] = 8 will go to disk 1, while a tuple with t[A] = 20 will go to disk 2.

NSDB - Parallel Databases

Augsten (Univ. Salzburg)

Sommersemester 2024 7/47

1/O Parallelism

|/O Parallelism

@ Reduce the time required to retrieve relations from disk by
partitioning the relations on multiple disks.

@ Horizontal partitioning — tuples of a relation are divided among
many disks such that each tuple resides on one disk.

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024

1/O Parallelism

Comparison of Partitioning Techniques/1

@ We distinguish three different types of data access:
1. sequential scan: scan the entire relation

2. point query: locate a specific tuple
@ predicate is equality, zero or one result tuple
e e.g., tuple of relation r with r.A =25 (A is a key)
e multi point query: zero or more result tuples (A is not a key)

3. range query: locate all tuples within a specified value range
o e.g., all tuples of relation r with 10 < r.A < 25.

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024

6/47

8/47

1/O Parallelism

Comparison of Partitioning Techniques/2

1/O Parallelism

Comparison of Partitioning Techniques/3

Round robin:
@ Good for sequential scan:

o all disks have almost an equal number of tuples
o retrieval work is thus well balanced between disks

@ Point queries and range queries are difficult to process
e no clustering — relevant tuples are scattered across all disks

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 9 /47

1/O Parallelism

Comparison of Partitioning Techniques/4

Range partitioning:
@ Provides data clustering by partitioning attribute value.

@ Good for sequential access.
@ Good for point queries:
o lookup single disk, leaving others available for answering other queries

Good for range queries on partitioning attribute:

o lookup single or few disks
e good if result tuples are from one to a few blocks of a disk

Execution skew: affects range queries and multi point queries
o if many blocks are to be fetched, they may still be fetched from one to
a few disks: potential parallelism in disk access is wasted
e e.g., partition by order date, then tuples with recent order dates will be
accessed more frequently

NSDB - Parallel Databases

Augsten (Univ. Salzburg)

Sommersemester 2024 11/47

Hash partitioning:
@ Good for sequential access

e assuming hash function is good, and partitioning attributes form a key,
tuples will be equally distributed between disks
e retrieval work is then well balanced between disks

@ Good for point queries on partitioning attribute
o lookup single disk, leaving others available for answering other queries

@ No clustering, so difficult to answer range queries

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 10/ 47

1/O Parallelism

Partitioning a Relation across Disks

o If a relation contains only a few tuples which will fit into a single disk
block, then assign the relation to a single disk.
o Large relations are preferably partitioned across all the available disks.

o If a relation consists of m disk blocks and there are n disks available,
then the relation should be allocated to min(m, n) disks.

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 12 /47

1/O Parallelism 1/O Parallelism

Handling of Data Skew Handling Skew using Histograms

@ Balanced partitioning vector can be constructed from histogram in a

@ Distribution of tuples to disks may be skewed: some disks have many . . .
. relatively straightforward fashion
tuples, while others have fewer tuples. - R o)
. e assume uniform distribution within each range of the histogram
@ Skew limits speedup. Example: _ . _ _
@ Histogram can be constructed by scanning relation, or sampling

o relation with 1000 tuples is partitioned to 100 disks (10 tuples/disk)
o expected speedup for scan: x100
o skew: one disk has 40 tuples = max. speedup is x25

50

@ Types of data skew: -
o Attribute-value skew:

@ Some values appear in the partitioning attributes of many tuples; all
the tuples with the same value for the partitioning attribute end up in

(blocks containing) tuples of the relation

N
o

frequency
w
o

the same partition.

o Can occur with range-partitioning and hash-partitioning. 20
o Partition skew: 10
o With range-partitioning, badly chosen partition vector may assign too
many tuples to some partitions and too few to others. -5 6-10 11-15 16-20 21-25
o Less likely with hash-partitioning if a good hash-function is chosen. value
Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 14/47

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 13 /47

1/O Parallelism Interquery Parallelism

. Qutline

Handling Skew Using Virtual Processor Partitioning

@ Skew in range partitioning can be handled elegantly using virtual
processor partitioning:
e create a large number of partitions (say 10x the number of processors) e Interquery Parallelism
@ assign virtual processors to partitions either in round-robin fashion or
based on estimated cost of processing each virtual partition

@ Basic idea:
e If any normal partition would have been skewed, it is very likely the
skew is spread over a number of virtual partitions.
o Skewed virtual partitions get spread across a number of processors, so
work gets distributed evenly.

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 16 / 47

NSDB - Parallel Databases Sommersemester 2024 15 /47

Augsten (Univ. Salzburg)

Interquery Parallelism

Interquery Parallelism

@ Queries/transactions execute in parallel with one another.

@ Increases transaction throughput; used primarily to scale up a
transaction processing system to support a larger number of
transactions per second.

@ Easiest form of parallelism to support, particularly in a shared-memory
parallel database, because even sequential database systems support
concurrent processing.

@ More complicated on shared-disk or shared-nothing architectures:
o locking and logging: coordinate by passing messages between
processors.
e data in a local buffer may have been updated at another processor.
e cache-coherency has to be maintained: reads and writes of data in
buffer must find latest version of data.

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024

Intraquery Parallelism

Outline

© Intraquery Parallelism
@ Intraoperation Parallelism
@ Interoperation Parallelism

NSDB - Parallel Databases Sommersemester 2024

Augsten (Univ. Salzburg)

Interquery Parallelism

Cache Coherency Protocol

@ Example of a cache coherency protocol for shared-disk systems:
e before reading/writing to a page, the page must be locked in
shared/exclusive mode
e on locking a page, the page must be read from disk
o before unlocking a page, the page must be written to disk if it was
modified.

@ More complex protocols with fewer disk reads/writes exist.

@ Cache coherency protocols for shared-nothing systems are similar.
Each database page is assigned a home processor. Requests to fetch
the page or write it to disk are sent to the home processor.

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 18 /47

Intraquery Parallelism

Intraquery Parallelism

@ Execution of a single query in parallel on multiple processors/disks;
important for speeding up long-running queries.
@ Two complementary forms of intraquery parallelism:
e Intraoperation Parallelism — parallelize the execution of each
individual operation in the query.
e Interoperation Parallelism — execute the different operations in a
query expression in parallel.
@ Intraoperation parallelism scales better with increasing parallelism
because the number of tuples processed by each operation is typically
more than the number of operations in a query.

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 20 /47

Intraquery Parallelism Intraoperation Parallelism

Intraquery Parallelism Intraoperation Parallelism

Parallel Processing of Relational Operations

@ Our discussion of parallel algorithms assumes:
e read-only queries
o shared-nothing architecture
e n processors, Py, ..., P,_1, and n disks Dy, ..., D,_1, where disk D;
is associated with processor P;.

@ If processor has multiple disks: simulate a single disk D;.

@ Shared-nothing architectures can be efficiently simulated on
shared-memory and shared-disk systems.
o Algorithms for shared-nothing systems can thus be run on
shared-memory and shared-disk systems.
o However, some optimizations may be possible.

Augsten (Univ. Salzburg) NSDB - Parallel Databases

Intraquery Parallelism Intraoperation Parallelism

Parallel Sort/2

Parallel External Sort-Merge

@ Assume the relation has already been partitioned among disks
Do, ..., Dp—1 (in whatever manner).

@ Each processor P; locally sorts the data on disk D;.

@ Sorted runs of processors are merged to get the final sorted output.
o Parallelize the merging of sorted runs as follows:
o The sorted partitions at each processor P; are range-partitioned across
the processors Py, ..., Pp_1.
o Each processor P; performs a merge on the streams as they are
received, to get a single sorted run.
e The sorted runs on processors Py, ..., Pp_1 are concatenated to get
the final result.

NSDB - Parallel Databases

Augsten (Univ. Salzburg)

Sommersemester 2024 21 /47

Sommersemester 2024 23 /47

Parallel Sort/1

Range-Partitioning Sort
@ Choose processors Py, ..., Ppn_1, where m < n to do sorting.
o Create range-partition vector with m ranges, on the sorting attributes

@ Redistribute the relation using range partitioning

o all tuples that lie in the i range are sent to processor P;
e P; stores the tuples it received temporarily on disk D;
o this step requires 1/0 and communication overhead

@ Each processor P; sorts its partition of the relation locally.

@ Each processors executes same operation (sort) in parallel with other
processors, without any interaction with the others (data parallelism).
o Final merge operation is trivial: range-partitioning ensures that, for

0 <7 < j < m, the key values in processor P; are all less than the key
values in P;.

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 22 /47

Intraquery Parallelism Intraoperation Parallelism

Parallel Join

@ The join operation requires pairs of tuples to be tested to see if they
satisfy the join condition, and if they do, the pair is added to the join
output.

o Parallel join algorithms attempt to split the pairs to be tested over
several processors. Each processor then computes part of the join
locally.

@ In a final step, the results from each processor can be collected
together to produce the final result.

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 24 /47

Intraquery Parallelism Intraoperation Parallelism Intraquery Parallelism Intraoperation Parallelism

Partitioned Join/1 Partitioned Join/2

@ For equi-joins and natural joins, it is possible to partition the two — —
input relations across the processors, and compute the join locally at
each processor.

//\|
|

@ Let r and s be the input relations, and we want to compute
r>Xl, A=s.B S.

o r and s each are partitioned into n partitions, denoted :]
ro, M, ..., rp—1 and sp, S1, ..., Sp_1. _ r

@ Can use either range partitioning or hash partitioning.

@ r and s must be partitioned on their join attributes (r.A and s.B), rs
using the same range-partitioning vector or hash function.

ORORONO

@ Partitions r; and s; are sent to processor P;, : . : s

@ Each processor P; locally computes r; <, o—s, g Si. Any of the r
standard join methods can be used.

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 25 /47 Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 26 /47

Intraquery Parallelism Intraoperation Parallelism Intraquery Parallelism Intraoperation Parallelism

Partitioned Parallel Hash-Join/1 Partitioned Parallel Hash-Join /2

@ Once the tuples of s have been distributed, probe relation r is

Parallelizing partitioned hash join: redistributed across the n processors using hash function h;.

° i i i ion. .
Assume s is smaller than r, then s is chosen as the build relation @ Let r; denote the tuples of relation r that are sent to processor P;.

@ A hash function h; takes the join attribute value x of each tuple in s

. @ As tuples of relation r are received at the destination processors P;,
and maps this tuple to one of the n processors.

they are partitioned on P; using hash function hs.
@ All tuples are sent to the appropriate processors: a tuple with hash

o @ Each processor P; executes the build and probe phases of the
value h(x) = i is sent to processor P;.

hash-join algorithm on the local partitions r; and s; to produce a

@ Let s; denote the tuples of relation s that are sent to processor P;. partition of the final result of the hash-join.

@ As tuples of relation s are received at the destination processors P;, o Note: Hash-join optimizations can be applied to the parallel case,
they are partitioned further using another hash function, hy, which is e.g., the hybrid hash-join algorithm can be used to cache some of the
used to compute the hash-join locally. incoming tuples in memory and avoid the cost of writing them to disk

and reading them back in.

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 27 /47 Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 28 /47

Intraquery Parallelism Intraoperation Parallelism

Fragment-and-Replicate Join/1

Intraquery Parallelism Intraoperation Parallelism

Parallel Nested-Loop Join

@ Partitioning not possible for some join conditions
e E.g., non-equijoin conditions, such as r.A > s.B.

@ For joins were partitioning is not applicable, parallelization can be
accomplished by fragment and replicate technique
@ Special case — asymmetric fragment-and-replicate:
o One of the relations, say r, is partitioned; any partitioning technique
can be used.
o The other relation, s, is replicated across all the processors.
e Processor P; then locally computes the join of r; with all of s using any
join technique.

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 29 /47

Intraquery Parallelism Intraoperation Parallelism

Fragment-and-Replicate Join/2

§5¢¢

Asymmetric fragment and
replicate : : : : :

Fragment and replicate

NSDB - Parallel Databases Sommersemester 2024 31/47

Augsten (Univ. Salzburg)

@ Assume that
e relation s is much smaller than relation r
o r is stored by partitioning (partitioning technique irrelevant)
e there is an index on a join attribute of relation r at each of the
partitions of relation r.

@ Use asymmetric fragment-and-replicate, with relation s being
replicated, and using the existing partitioning of relation r.

@ Each processor P; where a partition of relation s is stored reads the
tuples of relation s stored in D;, and replicates the tuples to every
other processor P;.

o At the end of this phase, relation s is replicated at all sites that store
tuples of relation r.

@ Each processor P; performs an indexed nested-loop join of relation s

with the i*" partition of relation r.

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 30/ 47

Intraquery Parallelism Intraoperation Parallelism

Fragment-and-Replicate Join/3

@ General case: reduces the sizes of the relations at each processor.
e r is partitioned into n partitions ryg, r, ..., r,—1; S is partitioned into
m partitions, Sp, S1, ..., Sm—1-

Any partitioning technique may be used.

o

e There must be at least m * n processors.

o Label the processors as

o Poo, Pox, ...y Pom—1, Pro, .-+, Paci,m—1.

o P;j computes the join of r; with s;. In order to do so, r; is replicated to
P,"O, P,"l, ey Pi,m—lv while s; is replicated to P()’,', :DL,'7 ey Pn—l,i

o Any join technique can be used at each processor P; ;.

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 32 /47

Intraquery Parallelism Intraoperation Parallelism

Fragment-and-Replicate Join /4

Intraquery Parallelism Intraoperation Parallelism

Other Relational Operations/1

@ Both versions of fragment-and-replicate work with any join condition,
since every tuple in r can be tested with every tuple in s.

@ Usually has a higher cost than partitioning, since one of the relations
(for asymmetric fragment-and-replicate) or both relations (for general
fragment-and-replicate) have to be replicated.

@ Sometimes asymmetric fragment-and-replicate is preferable even
though partitioning could be used.

NSDB - Parallel Databases Sommersemester 2024 33/47

Augsten (Univ. Salzburg)

Intraquery Parallelism Intraoperation Parallelism

Other Relational Operations/2

@ Duplicate elimination
e Perform by using either of the parallel sort techniques
@ eliminate duplicates as soon as they are found during sorting.
o Can also partition the tuples (using either range- or hash-partitioning)
and perform duplicate elimination locally at each processor.
@ Projection
e Projection without duplicate elimination can be performed as tuples are
read in from disk in parallel.
o If duplicate elimination is required, any of the above duplicate
elimination techniques can be used.

NSDB - Parallel Databases Sommersemester 2024 35 /47

Augsten (Univ. Salzburg)

Selection op(r)
@ If 6 is of the form a; = v, where a; is an attribute and v a value.
e If r is partitioned on a; the selection is performed at a single processor.
@ If 6 is of the form | < a; < u (i.e., 0 is a range selection) and the
relation has been range-partitioned on a;
e Selection is performed at each processor whose partition overlaps with
the specified range of values.
@ In all other cases: the selection is performed in parallel at all the
processors.

NSDB - Parallel Databases Sommersemester 2024 34 /47

Augsten (Univ. Salzburg)

Intraquery Parallelism Intraoperation Parallelism

Grouping/Aggregation

@ Partition the relation on the grouping attributes and then compute
the aggregate values locally at each processor.

@ Can reduce cost of transferring tuples during partitioning by partly
computing aggregate values before partitioning.
@ Consider the sum aggregation operation:
o Perform aggregation operation at each processor P; on those tuples
stored on disk D;
@ results in tuples with partial sums at each processor.
@ Result of the local aggregation is partitioned on the grouping
attributes, and the aggregation performed again at each processor P;
to get the final result.

@ Fewer tuples need to be sent to other processors during partitioning.

NSDB — Parallel Databases Sommersemester 2024 36 /47

Augsten (Univ. Salzburg)

Intraquery Parallelism Intraoperation Parallelism Intraquery Parallelism Interoperation Parallelism

Cost of Parallel Evaluation of Operations ' Interoperator Parallelism

@ If there is no skew in the partitioning, and there is no overhead due to
the parallel evaluation, expected speedup will be n

@ If skew and overheads are also to be taken into account, the time

taken by a parallel operation can be estimated as o Two types of interoperation parallelism:

e pipelined parallelism

Tpart + Tasm + max(To, Ta, ..., Tn-1) o independent parallelism

o Tpar is the time for partitioning the relations
o T,sm is the time for assembling the results
e T; is the time taken for the operation at processor P;
@ this needs to be estimated taking into account the skew, and the time
wasted in contentions.

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 37 /47 Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 38 /47

Intraquery Parallelism Interoperation Parallelism Intraquery Parallelism Interoperation Parallelism

Pipelined Parallelism Factors Limiting Utility of Pipeline Parallelism

@ Example: Consider a join of four relations @ Pipeline parallelism is useful since it avoids writing intermediate
< <3 Xy results to disk
@ Set up a pipeline that computes the three joins in parallel @ Useful with small number of processors, but does not scale up well
o Let Py be assigned the computation of temp; = r; > ry with more processors. One reason is that pipeline chains do not attain
o And P, be assigned the computation of temp, = temp; < r3 sufficient length.
° And P5 be assigned the computation of temp; > ry @ Cannot pipeline operators which do not produce output until all
@ Each operation can execute in parallel sending result tuples to the inputs have been accessed (e.g., aggregate and sort)

next operation even while it is computing further results

@ Little speedup is obtained for the frequent cases of execution skew in
Requires pipelineable (non-blocking) join evaluation algorithm (e.g., which one operator’s execution cost is much higher than the others.
indexed nested loops join)

@ Advantage: avoids writing intermediate results to disk

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 39 /47 Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 40 /47

Intraquery Parallelism Interoperation Parallelism

Independent Parallelism

Query Optimization and System Design

. Qutline

@ Example: Consider a join of four relations

X rRXrrRXn
@ Independent parallelism:
Let P; be assigned the computation of temp; = <,
And P, be assigned the computation of temp, = r3 <11y
And P3 be assigned the computation of temp; < temp,

P1 and P, can work independently in parallel
P53 has to wait for input from Py and P,

o Can pipeline output of P; and P, to P3, combining independent
parallelism and pipelined parallelism

@ Does not provide a high degree of parallelism

o useful with a lower degree of parallelism.
o less useful in a highly parallel system.

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 41 /47

Query Optimization and System Design

Query Optimization/1

@ Query optimization in parallel databases is significantly more complex
than query optimization in sequential databases.

@ Cost models are more complicated, since we must take into account
partitioning costs and issues such as skew and resource contention.
@ When scheduling execution tree in parallel system, must decide:

e How to parallelize each operation and how many processors to use for
it.

o What operations to pipeline, what operations to execute independently
in parallel, and what operations to execute sequentially, one after the
other.

@ Determining the amount of resources to allocate for each operation is
a problem.
o E.g., allocating more processors than optimal can result in high
communication overhead.
@ Long pipelines should be avoided as the final operation may wait a lot
for inputs, while holding precious resources

NSDB - Parallel Databases

Sommersemester 2024 43 /47

Augsten (Univ. Salzburg)

@ Query Optimization and System Design

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 42 /47

Query Optimization and System Design

Query Optimization /2

@ Use heuristics: Number of parallel evaluation plans much larger than
number of sequential evaluation plans.
@ Heuristic 1: No pipelining, only intra-operation parallelism:
o Parallelize every operation on all processors
o Use standard optimization technique, but with new cost model
@ Heuristic 2: First choose most efficient sequential plan and then
choose how best to parallelize the operations in that plan.

e Volcano parallel database popularized the exchange-operator model

e exchange operator is introduced into query plans to partition and
distribute tuples

e each operation works independently on local data on each processor, in
parallel with other copies of the operation

@ Choosing a good physical storage organization (partitioning
technique) is important to speed up queries.

Augsten (Univ. Salzburg) NSDB - Parallel Databases Sommersemester 2024 44 /47

Query Optimization and System Design

Design of Parallel Systems/1

Some issues in the design of parallel systems:

o Parallel loading of data from external sources is needed in order to
handle large volumes of incoming data.
@ Resilience to failure of some processors or disks.

e Probability of some disk or processor failing is higher in a parallel
system.

o Operation (perhaps with degraded performance) should be possible in
spite of failure.

e Redundancy achieved by storing extra copy of every data item at
another processor.

NSDB - Parallel Databases

Sommersemester 2024

Augsten (Univ. Salzburg)

Query Optimization and System Design

Examples of Parallel Database Systems

Teradata (1979), appliance, still large market share

IBM Netezza (1999), appliance

Microsoft DATAllegro / Parallel Data Warehouse (2003), appliance
Greenplum (2005), Pivotal, open source

Vertica Analytic Database (2005) commodity hardware

Oracle Exadata (2008), appliance

SAP Hana (2010), main memory, appliance

NSDB - Parallel Databases

Augsten (Univ. Salzburg)

Sommersemester 2024 47 /47

Query Optimization and System Design

Design of Parallel Systems/2

@ On-line reorganization of data and schema changes must be
supported.

e For example, index construction on terabyte databases can take hours
or days even on a parallel system.

o Need to allow other processing (insertions/deletions/updates) to be
performed on relation even as index is being constructed.

e Basic idea: index construction tracks changes and “catches up” on
changes at the end.
@ Also need support for on-line repartitioning and schema changes
(executed concurrently with other processing).

Augsten (Univ. Salzburg) NSDB — Parallel Databases Sommersemester 2024 46 / 47

