Advanced Databases

Transactions

Nikolaus Augsten

nikolaus.augsten@plus.ac.at
Department of Computer Science
University of Salzburg

A database
research group

https://dbresearch.uni-salzburg.at

WS 2024 /25
Version October 15, 2024

Adapted from slides for textbook “Database System Concepts”
by Silberschatz, Korth, Sudarshan
http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html

Augsten (Univ. Salzburg) ADB — Transactions WS 2024 /25

Outline

@ Transaction Concept
© Concurrent Executions
© Serializability

@ Recoverability

© Implementation of Isolation / SQL

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Transaction Concept

Outline

@ Transaction Concept

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Transaction Concept

Transaction Concept

@ A transaction is a unit of program execution that accesses and
possibly updates various data items.

@ E.g., transaction to transfer $50 from account A to account B:

1. read(A)
2. A:=A-50
3. write(A)
4. read(B)
5. B:=B+50
6. write(B)

@ [wo main issues to deal with:

e Failures of various kinds, such as hardware failures and system crashes
e Concurrent execution of multiple transactions

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Transaction Concept

Required Properties of a Transaction/1

@ E.g., transaction to transfer $50 from account A to account B:
1. read(A)
2. A:=A—-50
3. write(A)
4. read(B)
5. B:=B+50
6. write(B)
@ Atomicity requirement

e If the transaction fails after step 3 and before step 6, money will be
“lost” leading to an inconsistent database state

@ Failure could be due to software or hardware

e The system should ensure that updates of a partially executed
transaction are not reflected in the database

@ Durability requirement — once the user has been notified that the
transaction has completed (i.e., the transfer of the $50 has taken
place), the updates to the database by the transaction must persist
even if there are software or hardware failures.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Transaction Concept

Required Properties of a Transaction /2

@ Consistency requirement in above example:
@ The sum of A and B is unchanged by the execution of the transaction

@ In general, consistency requirements include

e Explicitly specified integrity constraints such as primary keys and

foreign keys
e Implicit integrity constraints

@ e.g., sum of balances of all accounts, minus sum of loan amounts must
equal value of cash-in-hand
@ A transaction, when starting to execute, must see a consistent
database.

@ During transaction execution the database may be temporarily
Inconsistent.

@ When the transaction completes successfully the database must be
consistent

e Erroneous transaction logic can lead to inconsistency

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Transaction Concept

Required Properties of a Transaction/3

@ Isolation requirement — if between steps 3 and 6 (of the fund
transfer transaction), another transaction T2 is allowed to access the
partially updated database, it will see an inconsistent database (the
sum A + B will be less than it should be).

T1 T2
1. read(A)
2. A:=A-50
3. write(A)
read(A), read(B), print(A + B)
4, read(B)
5. B:=B+50
6. write(B)

@ Isolation can be ensured trivially by running transactions serially.

@ However, executing multiple transactions concurrently has significant
benefits.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Transaction Concept

ACID Properties

A transaction is a unit of program execution that accesses and possibly
updates various data items. To preserve the integrity of data the database
system must ensure:

@ Atomicity. Either all operations of the transaction are properly
reflected in the database or none are.

@ Consistency. Execution of a transaction in isolation preserves the
consistency of the database.

@ Isolation. Although multiple transactions may execute concurrently,
each transaction must be unaware of other concurrently executing

transactions. Intermediate transaction results must be hidden from
other concurrently executed transactions.

e That is, for every pair of transactions T; and T;, it appears to T; that

either T; finished execution before T; started, or T; started execution
after T; finished.

@ Durability. After a transaction completes successfully, the changes it
has made to the database persist, even if there are system failures.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Transaction Concept

Transaction State/1

@ Active — the initial state; the transaction stays in this state while it
Is executing

@ Partially committed — after the final statement has been executed.

@ Failed — after the discovery that normal execution can no longer
proceed.

@ Aborted — after the transaction has been rolled back and the
database restored to its state prior to the start of the transaction.
Two options after it has been aborted:

e Restart the transaction
@ can be done only if no internal logical error

e Kill the transaction

@ Committed — after successful completion.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Transaction Concept

Transaction State/2

partially
committed

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Concurrent Executions

Outline

© Concurrent Executions

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Concurrent Executions

Concurrent Executions

@ Multiple transactions are allowed to run concurrently in the system.
Advantages are:

e Increased processor and disk utilization, leading to better transaction
throughput, e.g., one transaction can be using the CPU while another
is reading from or writing to the disk

e Reduced average response time for transactions: short transactions
need not wait behind long ones.

@ Concurrency control schemes

e mechanisms to achieve isolation
e control the interaction among the concurrent transactions in order to
prevent them from destroying the consistency of the database

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Concurrent Executions

Schedules

@ Schedule — a sequence of instructions that specify the chronological
order in which instructions of concurrent transactions are executed

e A schedule for a set of transactions must consist of all instructions of
those transactions.

e Must preserve the order in which the instructions appear in each
individual transaction.

@ A transaction that successfully completes its execution will have a
commit instruction as the last statement.

@ A transaction that fails to successfully complete its execution will
have an abort instruction as the last statement.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Concurrent Executions

Schedule 1

@ Let T7 transfer $50 from A to B, and T» transfer 10% of the balance
from A to B.

@ An example of a serial schedule in which T7 is followed by T»:

! T2

read(A)

A=A-50

write(A)

read(B)

B := B+ 50

write(B)

commit
read(A)
temp .= A% 0.1
A:=A—temp
write(A)
read(B)
B := B + temp
write(B)
commit

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Concurrent Executions

Schedule 2

@ A serial schedule in which T, is followed by T7:

! T2
read(A)
temp .= A% 0.1
A:=A—temp
write(A)
read(B)
B := B+ temp
write(B)
commit

read(A)

A:=A-50

write(A)

read(B)

B := B +50

write(B)

commit

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Concurrent Executions

Schedule 3

@ Let T; and T, be the transactions defined previously. The following
schedule is not a serial schedule, but it is equivalent to Schedule 1.

T T2

read(A)

A:=A-50

write(A)
read(A)
temp := A% 0.1
A:=A— temp
write(A)

read(B)

B :=B+50

write(B)

commit
read(B)
B := B + temp
write(B)
commit

Note — In schedules 1, 2 and 3, the sum “A+ B" is preserved.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Concurrent Executions

Schedule 4

@ The following concurrent schedule does not preserve the sum of

IIA _|_ B”

T T2

read(A)

A:=A-50
read(A)
temp .= A% 0.1
A:=A—temp
write(A)
read(B)

write(A)

read(B)

B := B +50

write(B)

commit
B .= B+ temp
write(B)
commit

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

Outline

© Serializability

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

Concurrent Executions

@ Basic Assumption — Each transaction preserves database
consistency.
@ Thus, serial execution of a set of transactions preserves database

consistency.

@ A (possibly concurrent) schedule is serializable if it is equivalent to a
serial schedule. Different forms of schedule equivalence give rise to
the notions of:

e conflict serializability
e view serializability

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

Simplified model of transactions

@ We ignore operations other than read and write instructions

@ We assume that transactions may perform arbitrary computations on
data in local buffers in between reads and writes.

@ Our simplified schedules consist of only read and write instructions.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

Conflicting Instructions

@ Let /; and /; be two instructions of transactions T; and T;
respectively. Instructions /; and /; conflict if and only if there exists
some item () accessed by both [; and /;, and at least one of these

instructions wrote Q.

I I

read(Q) | read(Q) | no conflict
read(Q) | write(Q) | conflict
write(Q) | read(Q) | conflict
write(Q) | write(Q) | conflict

e Intuitively, a conflict between /; and /; forces a (logical) temporal
order between them.

e If /; and I; are consecutive in a schedule and they do not conflict,
their results would remain the same even if they had been
interchanged in the schedule.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

Conflict Serializability/1

@ If a schedule S can be transformed into a schedule S’ by a series of
swaps of non-conflicting instructions, then S and S’ are conflict

equivalent.

@ A schedule S is conflict serializable if and only if it is conflict
equivalent to a serial schedule.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

Conflict Serializability /2

@ Schedule 3 and (serial) Schedule 6 are conflict equivalent, therefore
Schedule 3 is conflict serializable.

T T2 T T2
read(A) read(A)
write(A) write(A)
read(A) read(B)
write(A) write(B)
read(B) read(A)
write(B) write(A)
read(B) read(B)
write(B) write(B)
Table: Schedule 3 Table: Schedule 6

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

Conflict Serializability /3

@ Example of a schedule that is not conflict serializable:

T3 Ty
read(Q)

write(Q)
read(Q)

@ We are unable to swap non-conflicting instructions in the above
schedule to obtain either the serial schedule < T3, T4 >, or the serial

schedule < T4, T3 >.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

Precedence Graph

@ Consider some schedule of a set of transactions Ty, To,..., T,

@ Precedence graph: a direct graph where the vertices are the
transactions (names).

@ We draw an arc from T; to T; if the two transaction conflict, and T;
accessed the data item on which the conflict arose earlier.

@ We may label the arc by the item that was accessed.

e Example

@

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

Testing for Conflict Serializability

@ A schedule is conflict serializable if and only if G

its precedence graph is acyclic. a a

@ Cycle detection: depending on the algorithm,
cycle detection takes a

e order n® runtime, where n is the number of

vertices in the graph, or
e order n+ e runtime, where e is the number
of edges.

@ Serializability order: is obtained by a
topological sorting of the acyclic graph, i.e.,

O,

™
a linear order consistent with the partial order . .
of the graph. % %

@ Example: a serializability order for the
schedule (a) would be one of either (b) or (c)

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

View Serializability /1

@ Let S and S’ be two schedules with the same set of transactions. S
and S’ are view equivalent if the following three conditions are met

for each data item Q@:

1. If in schedule S transaction T; reads the initial value of @, then also in
schedule S’ transaction T; must read the initial value of Q.

2. If in schedule S transaction T; executes read(Q), and that value was
produced by transaction T; (if any), then also in schedule S’
transaction T; must read the value of @ that was produced by the
same write(() operation of transaction T;.

3. The transaction (if any) that performs the final write(Q) operation in
schedule S must also perform the final write(Q) operation in schedule

S/
@ Like conflict equivalence, view equivalence is based purely on reads
and writes.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

View Serializability /2

@ A schedule S is view serializable if it is view equivalent to a serial
schedule.

@ Every conflict serializable schedule is also view serializable.

@ Below is a schedule which is view-serializable but not conflict

serializable.
To7 Tos T29
read(Q)
write(Q)
write(Q)
write(Q)

@ What serial schedule is the schedule above equivalent to?

@ Every view serializable schedule that is not conflict serializable has
blind writes.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

Test for View Serializability

@ The precedence graph test for conflict serializability cannot be used
directly to test for view serializability.

@ The so-called polygraph is used to test for view serializability:

e some of the edges in the polygraph form mutale exclusive pairs, i.e.,
only one of the two edges in a pair is required;

o if there is a choice of edges such that the resulting graph is asyclic,
then the corresponding schedule is view serializable.

@ The problem of checking if a schedule is view serializable falls in the
class of NP-complete problems, i.e., it is assumed to be intractable.

@ However, practical algorithms that just check some sufficient
conditions for view serializability can still be used.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Serializability

More Complex Notions of Serializability

T1

@ The following schedule produces the same result as the serial schedule
<T1,T5>, yet is neither conflict equivalent nor view equivalent to it.

Ts

read(A)
A:=A-50
write(A)

read(B)
B := B + 50
write(B)

read(B)
B:=B-10
write(B)

read(A)
A=A+10
write(A)

@ Example: If we start with A = 1000 and B = 2000, the final result is
A = 960 and B = 2040 as for the serial schedule <T1,T5>.

@ Such equivalences cannot be derived by analysing reads and writes
alone: in the example, the commutativity of the operations is relevant.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Recoverability

Outline

@ Recoverability

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Recoverability

Recoverable Schedules

@ Recoverable schedule — if a transaction T; reads a data item
previously written by a transaction T; , then the commit operation of
T; must appear before the commit operation of T;.

@ The following schedule is not recoverable: Tg reads A written by Tg
but commits before Tg.

Ts To
read(A)
write(A)
read(A)
C+A
write(C)
commit
read(B)

@ If Tg aborts, Tg has read and copied an inconsistent database state.

@ Database must ensure that schedules are recoverable.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Recoverability

Cascading Rollbacks

@ Cascading rollback: a single transaction failure leads to a series of
transaction rollbacks.

@ Consider the following schedule where none of the transactions has
yet committed (so the schedule is recoverable):

T1o Tu T12
read(A)
read(B)
write(A)

read(A)

write(A)

read(A)

abort

If T1o fails, T11 and T1» must also be rolled back.

@ Can lead to the undoing of a significant amount of work.

WS 202425

Augsten (Univ. Salzburg) ADB - Transactions

Recoverability

Cascadeless Schedules

@ Cascadeless schedules — for each pair of transactions T; and T; such
that T; reads a data item previously written by T;, the commit
operation of T; appears before the read operation of T;.

@ Every cascadeless schedule is also recoverable.

@ Example of a schedule that is NOT cascadeless:

T10 T11 T12
read(A)
read(B)
write(A)

read(A)

write(A)

read(A)

abort

@ |t i1s desirable to restrict the schedules to those that are cascadeless.

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Implementation of Isolation / SQL

Outline

© Implementation of Isolation / SQL

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Implementation of Isolation / SQL

Concurrency Control and Recoverability

@ A database must provide a mechanism that will ensure that all
possible schedules are both:

e conflict serializable
e recoverable and preferably cascadeless

@ A policy in which only one transaction can execute at a time
generates serial schedules, but provides a poor degree of concurrency.

@ Concurrency-control schemes tradeoff between the amount of
concurrency they allow and the amount of overhead that they incur.

@ Protocols that assure serializability and recoverability are required:

o testing a schedule for serializability after it has executed (e.g., cycle
detection in precedence graphs) is too late!

o serializability tests help us to understand why a concurrency control
protocol is correct

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Implementation of Isolation / SQL

Weak Levels of Consistency

@ Some applications are willing to live with weak levels of consistency,
allowing schedules that are not serializable, e.g.:

e a read-only transaction that computes an approximate total balance of
all accounts
e database statistics computed for query optimization can be approximate

@ Such transactions need not be serializable with respect to other
transactions.

@ Tradeoff: accuracy for performance

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Implementation of Isolation / SQL

Undesirable Phenomena of Concurrent Transactions

@ Dirty read

e transaction reads data written by concurrent uncommitted transaction
e problem: read may return a value that was never in the database
because the writing transaction aborted

@ Non-repeatable read

o different reads on the same item within a single transaction give
different results (caused by other transactions)

e e.g., concurrent transactions T1: x = R(A), y = R(A), z=y — x and
To: W(A =2xA), then z can be either zero or the initial value of A
(should be zero!)

@ Phantom read

e repeating the same query later in the transaction gives a different set
of result tuples

e other transactions can insert new tuples during a scan

o e.g., “Q: get accounts with balance > 1000" gives two tuples the first
time, then a new account with balance > 1000 is inserted by an other
transaction; the second time @ gives three tuples

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Implementation of Isolation / SQL

Isolation Guarantees (SQL Standard)

@ Read uncommitted: dirty, non-repeatable, phantom

e reads may access uncommitted data
e writes do not overwrite uncommitted data

@ Read committed: non-repeatable, phantom

e reads can access only committed data
e cursor stability: in addition, read is repeatable within single SELECT

@ Repeatable read: phantom
e phantom reads possible

@ Serializable:
e none of the undesired phenomenas can happen

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

Implementation of Isolation / SQL

Transaction Definition in SQL

@ Data manipulation language must include a construct for specifying
the set of actions that comprise a transaction.

@ In SQL, a transaction begins implicitly.

o BEGIN [TRANSACTION ISOLATION LEVEL ..]
e Isolation levels: read committed, read uncommitted, repeatable read,
serializable

@ A transaction in SQL ends by:

o COMMIT commits current transaction and begins a new one.
e ROLLBACK causes current transaction to abort.

@ Typicallly, an SQL statement commits implicitly if it executes
successfully

e Implicit commit can be turned off by a database directive,
e.g. in JDBC, connection.setAutoCommit(false);

Augsten (Univ. Salzburg) ADB - Transactions WS 2024/25

