
Advanced Databases
Transactions

Nikolaus Augsten
nikolaus.augsten@plus.ac.at

Department of Computer Science
University of Salzburg

https://dbresearch.uni-salzburg.at

WS 2024/25
Version October 15, 2024

Adapted from slides for textbook “Database System Concepts”
by Silberschatz, Korth, Sudarshan

http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 1 / 40

Outline

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 2 / 40

Transaction Concept

Outline

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 3 / 40

Transaction Concept

Transaction Concept

A transaction is a unit of program execution that accesses and
possibly updates various data items.

E.g., transaction to transfer $50 from account A to account B:

1. read(A)
2. A := A− 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

Two main issues to deal with:

Failures of various kinds, such as hardware failures and system crashes
Concurrent execution of multiple transactions

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 4 / 40

Transaction Concept

Required Properties of a Transaction/1

E.g., transaction to transfer $50 from account A to account B:

1. read(A)
2. A := A− 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

Atomicity requirement
If the transaction fails after step 3 and before step 6, money will be
“lost” leading to an inconsistent database state

Failure could be due to software or hardware

The system should ensure that updates of a partially executed
transaction are not reflected in the database

Durability requirement — once the user has been notified that the
transaction has completed (i.e., the transfer of the $50 has taken
place), the updates to the database by the transaction must persist
even if there are software or hardware failures.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 5 / 40

Transaction Concept

Required Properties of a Transaction/2

Consistency requirement in above example:

The sum of A and B is unchanged by the execution of the transaction

In general, consistency requirements include

Explicitly specified integrity constraints such as primary keys and
foreign keys
Implicit integrity constraints

e.g., sum of balances of all accounts, minus sum of loan amounts must
equal value of cash-in-hand

A transaction, when starting to execute, must see a consistent
database.

During transaction execution the database may be temporarily
inconsistent.

When the transaction completes successfully the database must be
consistent

Erroneous transaction logic can lead to inconsistency

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 6 / 40

Transaction Concept

Required Properties of a Transaction/3

Isolation requirement — if between steps 3 and 6 (of the fund
transfer transaction), another transaction T2 is allowed to access the
partially updated database, it will see an inconsistent database (the
sum A + B will be less than it should be).

T1 T2
1. read(A)
2. A := A− 50
3. write(A)

read(A), read(B),print(A+ B)
4. read(B)
5. B := B + 50
6. write(B)

Isolation can be ensured trivially by running transactions serially.

However, executing multiple transactions concurrently has significant
benefits.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 7 / 40

Transaction Concept

ACID Properties

A transaction is a unit of program execution that accesses and possibly
updates various data items. To preserve the integrity of data the database
system must ensure:

Atomicity. Either all operations of the transaction are properly
reflected in the database or none are.

Consistency. Execution of a transaction in isolation preserves the
consistency of the database.

Isolation. Although multiple transactions may execute concurrently,
each transaction must be unaware of other concurrently executing
transactions. Intermediate transaction results must be hidden from
other concurrently executed transactions.

That is, for every pair of transactions Ti and Tj , it appears to Ti that
either Tj finished execution before Ti started, or Tj started execution
after Ti finished.

Durability. After a transaction completes successfully, the changes it
has made to the database persist, even if there are system failures.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 8 / 40

Transaction Concept

Transaction State/1

Active — the initial state; the transaction stays in this state while it
is executing

Partially committed — after the final statement has been executed.

Failed — after the discovery that normal execution can no longer
proceed.

Aborted — after the transaction has been rolled back and the
database restored to its state prior to the start of the transaction.
Two options after it has been aborted:

Restart the transaction

can be done only if no internal logical error

Kill the transaction

Committed — after successful completion.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 9 / 40

Transaction Concept

Transaction State/2

active

partially
committed

committed

failed aborted

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 10 / 40

Concurrent Executions

Outline

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 11 / 40

Concurrent Executions

Concurrent Executions

Multiple transactions are allowed to run concurrently in the system.
Advantages are:

Increased processor and disk utilization, leading to better transaction
throughput, e.g., one transaction can be using the CPU while another
is reading from or writing to the disk
Reduced average response time for transactions: short transactions
need not wait behind long ones.

Concurrency control schemes

mechanisms to achieve isolation
control the interaction among the concurrent transactions in order to
prevent them from destroying the consistency of the database

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 12 / 40

Concurrent Executions

Schedules

Schedule — a sequence of instructions that specify the chronological
order in which instructions of concurrent transactions are executed

A schedule for a set of transactions must consist of all instructions of
those transactions.
Must preserve the order in which the instructions appear in each
individual transaction.

A transaction that successfully completes its execution will have a
commit instruction as the last statement.

A transaction that fails to successfully complete its execution will
have an abort instruction as the last statement.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 13 / 40

Concurrent Executions

Schedule 1

Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance
from A to B.

An example of a serial schedule in which T1 is followed by T2:

T1 T2

read(A)
A := A− 50
write(A)
read(B)
B := B + 50
write(B)
commit

read(A)
temp := A ∗ 0.1
A := A− temp
write(A)
read(B)
B := B + temp
write(B)
commit

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 14 / 40

Concurrent Executions

Schedule 2

A serial schedule in which T2 is followed by T1:

T1 T2

read(A)
temp := A ∗ 0.1
A := A− temp
write(A)
read(B)
B := B + temp
write(B)
commit

read(A)
A := A− 50
write(A)
read(B)
B := B + 50
write(B)
commit

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 15 / 40

Concurrent Executions

Schedule 3

Let T1 and T2 be the transactions defined previously. The following
schedule is not a serial schedule, but it is equivalent to Schedule 1.

T1 T2

read(A)
A := A− 50
write(A)

read(A)
temp := A ∗ 0.1
A := A− temp
write(A)

read(B)
B := B + 50
write(B)
commit

read(B)
B := B + temp
write(B)
commit

Note — In schedules 1, 2 and 3, the sum “A+ B” is preserved.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 16 / 40

Concurrent Executions

Schedule 4

The following concurrent schedule does not preserve the sum of
“A+ B”

T1 T2

read(A)
A := A− 50

read(A)
temp := A ∗ 0.1
A := A− temp
write(A)
read(B)

write(A)
read(B)
B := B + 50
write(B)
commit

B := B + temp
write(B)
commit

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 17 / 40

Serializability

Outline

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 18 / 40

Serializability

Concurrent Executions

Basic Assumption — Each transaction preserves database
consistency.

Thus, serial execution of a set of transactions preserves database
consistency.

A (possibly concurrent) schedule is serializable if it is equivalent to a
serial schedule. Different forms of schedule equivalence give rise to
the notions of:

conflict serializability
view serializability

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 19 / 40

Serializability

Simplified model of transactions

We ignore operations other than read and write instructions

We assume that transactions may perform arbitrary computations on
data in local buffers in between reads and writes.

Our simplified schedules consist of only read and write instructions.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 20 / 40

Serializability

Conflicting Instructions

Let Ii and Ij be two instructions of transactions Ti and Tj

respectively. Instructions Ii and Ij conflict if and only if there exists
some item Q accessed by both Ii and Ij , and at least one of these
instructions wrote Q.

Ii Ij
read(Q) read(Q) no conflict
read(Q) write(Q) conflict
write(Q) read(Q) conflict
write(Q) write(Q) conflict

Intuitively, a conflict between Ii and Ij forces a (logical) temporal
order between them.

If Ii and Ij are consecutive in a schedule and they do not conflict,
their results would remain the same even if they had been
interchanged in the schedule.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 21 / 40

Serializability

Conflict Serializability/1

If a schedule S can be transformed into a schedule S ′ by a series of
swaps of non-conflicting instructions, then S and S ′ are conflict
equivalent.

A schedule S is conflict serializable if and only if it is conflict
equivalent to a serial schedule.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 22 / 40

Serializability

Conflict Serializability/2

Schedule 3 and (serial) Schedule 6 are conflict equivalent, therefore
Schedule 3 is conflict serializable.

T1 T2

read(A)
write(A)

read(A)
write(A)

read(B)
write(B)

read(B)
write(B)

Table: Schedule 3

T1 T2

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Table: Schedule 6

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 23 / 40

Serializability

Conflict Serializability/3

Example of a schedule that is not conflict serializable:

T3 T4

read(Q)
write(Q)

read(Q)

We are unable to swap non-conflicting instructions in the above
schedule to obtain either the serial schedule < T3,T4 >, or the serial
schedule < T4,T3 >.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 24 / 40

Serializability

Precedence Graph

Consider some schedule of a set of transactions T1,T2, . . . ,Tn

Precedence graph: a direct graph where the vertices are the
transactions (names).

We draw an arc from Ti to Tj if the two transaction conflict, and Ti

accessed the data item on which the conflict arose earlier.

We may label the arc by the item that was accessed.

Example

T1 T2
T3 T4

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 25 / 40

Serializability

Testing for Conflict Serializability

A schedule is conflict serializable if and only if
its precedence graph is acyclic.

Cycle detection: depending on the algorithm,
cycle detection takes

order n2 runtime, where n is the number of
vertices in the graph, or
order n + e runtime, where e is the number
of edges.

Serializability order: is obtained by a
topological sorting of the acyclic graph, i.e.,
a linear order consistent with the partial order
of the graph.

Example: a serializability order for the
schedule (a) would be one of either (b) or (c)

Ti

Tj Tk

Tm

(a)

Ti

Tj

Tk

Tm

(b)

Ti

Tk

Tj

Tm

(c)

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 26 / 40

Serializability

View Serializability/1

Let S and S ′ be two schedules with the same set of transactions. S
and S ′ are view equivalent if the following three conditions are met
for each data item Q:

1. If in schedule S transaction Ti reads the initial value of Q, then also in
schedule S ′ transaction Ti must read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value was
produced by transaction Tj (if any), then also in schedule S ′

transaction Ti must read the value of Q that was produced by the
same write(Q) operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q) operation in
schedule S must also perform the final write(Q) operation in schedule
S ′.

Like conflict equivalence, view equivalence is based purely on reads
and writes.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 27 / 40

Serializability

View Serializability/2

A schedule S is view serializable if it is view equivalent to a serial
schedule.

Every conflict serializable schedule is also view serializable.

Below is a schedule which is view-serializable but not conflict
serializable.

T27 T28 T29

read(Q)
write(Q)

write(Q)
write(Q)

What serial schedule is the schedule above equivalent to?

Every view serializable schedule that is not conflict serializable has
blind writes.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 28 / 40

Serializability

Test for View Serializability

The precedence graph test for conflict serializability cannot be used
directly to test for view serializability.

The so-called polygraph is used to test for view serializability:

some of the edges in the polygraph form mutale exclusive pairs, i.e.,
only one of the two edges in a pair is required;
if there is a choice of edges such that the resulting graph is asyclic,
then the corresponding schedule is view serializable.

The problem of checking if a schedule is view serializable falls in the
class of NP-complete problems, i.e., it is assumed to be intractable.

However, practical algorithms that just check some sufficient
conditions for view serializability can still be used.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 29 / 40

Serializability

More Complex Notions of Serializability

The following schedule produces the same result as the serial schedule
<T1,T5>, yet is neither conflict equivalent nor view equivalent to it.

T1 T5

read(A)
A := A− 50
write(A)

read(B)
B := B − 10
write(B)

read(B)
B := B + 50
write(B)

read(A)
A := A+ 10
write(A)

Example: If we start with A = 1000 and B = 2000, the final result is
A = 960 and B = 2040 as for the serial schedule <T1,T5>.

Such equivalences cannot be derived by analysing reads and writes
alone: in the example, the commutativity of the operations is relevant.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 30 / 40

Recoverability

Outline

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 31 / 40

Recoverability

Recoverable Schedules

Recoverable schedule — if a transaction Tj reads a data item
previously written by a transaction Ti , then the commit operation of
Ti must appear before the commit operation of Tj .

The following schedule is not recoverable: T9 reads A written by T8

but commits before T8.
T8 T9

read(A)
write(A)

read(A)
C ← A
write(C)
commit

read(B)

If T8 aborts, T9 has read and copied an inconsistent database state.

Database must ensure that schedules are recoverable.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 32 / 40

Recoverability

Cascading Rollbacks

Cascading rollback: a single transaction failure leads to a series of
transaction rollbacks.

Consider the following schedule where none of the transactions has
yet committed (so the schedule is recoverable):

T10 T11 T12

read(A)
read(B)
write(A)

read(A)
write(A)

read(A)
abort

If T10 fails, T11 and T12 must also be rolled back.

Can lead to the undoing of a significant amount of work.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 33 / 40

Recoverability

Cascadeless Schedules

Cascadeless schedules — for each pair of transactions Ti and Tj such
that Tj reads a data item previously written by Ti , the commit
operation of Ti appears before the read operation of Tj .

Every cascadeless schedule is also recoverable.

Example of a schedule that is NOT cascadeless:
T10 T11 T12

read(A)
read(B)
write(A)

read(A)
write(A)

read(A)
abort

It is desirable to restrict the schedules to those that are cascadeless.

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 34 / 40

Implementation of Isolation / SQL

Outline

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 35 / 40

Implementation of Isolation / SQL

Concurrency Control and Recoverability

A database must provide a mechanism that will ensure that all
possible schedules are both:

conflict serializable
recoverable and preferably cascadeless

A policy in which only one transaction can execute at a time
generates serial schedules, but provides a poor degree of concurrency.

Concurrency-control schemes tradeoff between the amount of
concurrency they allow and the amount of overhead that they incur.

Protocols that assure serializability and recoverability are required:

testing a schedule for serializability after it has executed (e.g., cycle
detection in precedence graphs) is too late!
serializability tests help us to understand why a concurrency control
protocol is correct

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 36 / 40

Implementation of Isolation / SQL

Weak Levels of Consistency

Some applications are willing to live with weak levels of consistency,
allowing schedules that are not serializable, e.g.:

a read-only transaction that computes an approximate total balance of
all accounts
database statistics computed for query optimization can be approximate

Such transactions need not be serializable with respect to other
transactions.

Tradeoff: accuracy for performance

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 37 / 40

Implementation of Isolation / SQL

Undesirable Phenomena of Concurrent Transactions

Dirty read

transaction reads data written by concurrent uncommitted transaction
problem: read may return a value that was never in the database
because the writing transaction aborted

Non-repeatable read

different reads on the same item within a single transaction give
different results (caused by other transactions)
e.g., concurrent transactions T1: x = R(A), y = R(A), z = y − x and
T2: W (A = 2 ∗ A), then z can be either zero or the initial value of A
(should be zero!)

Phantom read

repeating the same query later in the transaction gives a different set
of result tuples
other transactions can insert new tuples during a scan
e.g., “Q: get accounts with balance > 1000” gives two tuples the first
time, then a new account with balance > 1000 is inserted by an other
transaction; the second time Q gives three tuples

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 38 / 40

Implementation of Isolation / SQL

Isolation Guarantees (SQL Standard)

Read uncommitted: dirty, non-repeatable, phantom

reads may access uncommitted data
writes do not overwrite uncommitted data

Read committed: non-repeatable, phantom

reads can access only committed data
cursor stability: in addition, read is repeatable within single SELECT

Repeatable read: phantom

phantom reads possible

Serializable:

none of the undesired phenomenas can happen

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 39 / 40

Implementation of Isolation / SQL

Transaction Definition in SQL

Data manipulation language must include a construct for specifying
the set of actions that comprise a transaction.

In SQL, a transaction begins implicitly.

BEGIN [TRANSACTION ISOLATION LEVEL ...]
Isolation levels: read committed, read uncommitted, repeatable read,
serializable

A transaction in SQL ends by:

COMMIT commits current transaction and begins a new one.
ROLLBACK causes current transaction to abort.

Typicallly, an SQL statement commits implicitly if it executes
successfully

Implicit commit can be turned off by a database directive,
e.g. in JDBC, connection.setAutoCommit(false);

Augsten (Univ. Salzburg) ADB – Transactions WS 2024/25 40 / 40

