
Advanced Databases
Concurrency Control

Nikolaus Augsten
nikolaus.augsten@plus.ac.at

Department of Computer Science
University of Salzburg

https://dbresearch.uni-salzburg.at

WS 2024/25
Version 9. Oktober 2024

Adapted from slides for textbook “Database System Concepts”
by Silberschatz, Korth, Sudarshanhttp://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 1 / 72



Outline

1 Lock-Based Protocols

2 Timestamp-Based Protocols

3 Validation-Based Protocols

4 Multiversion Schemes

5 Insert, Delete, and Concurrency in Indexes

6 Weak Levels of Consistency

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 2 / 72



Lock-Based Protocols

Outline

1 Lock-Based Protocols

2 Timestamp-Based Protocols

3 Validation-Based Protocols

4 Multiversion Schemes

5 Insert, Delete, and Concurrency in Indexes

6 Weak Levels of Consistency

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 3 / 72



Lock-Based Protocols

Lock-Based Protocols/1

A lock is a mechanism to control concurrent access to a data item.

Data items can be locked in two modes:

1. exclusive (X) mode. Data item can be both read as well as written.
X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is requested using
lock-S instruction.

Lock requests are made to the concurrency-control manager by the
programmer. Transaction can proceed only after request is granted.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 4 / 72



Lock-Based Protocols

Lock-Based Protocols/2

Lock-compatibility matrix

S X

S true false

X false false

A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other
transactions.

Any number of transactions can hold shared locks on an item,

If any transaction holds an exclusive lock on the item no other
transaction may hold any lock on the item.

If a lock cannot be granted, the requesting transaction is made to
wait till all incompatible locks held by other transactions have been
released. The lock is then granted.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 5 / 72



Lock-Based Protocols

Lock-Based Protocols/3

Example of a transaction performing locking:

T2: lock-S(A)
read(A)
unlock(A)
lock-S(B)
read(B)
unlock(B)
display(A+ B)

Locking as above is not sufficient to guarantee serializability — if A
and B get updated in-between the read of A and B, the displayed
sum would be wrong.

A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks. Locking protocols restrict the set of
possible schedules.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 6 / 72



Lock-Based Protocols

The Two-Phase Locking Protocol/1

This protocol ensures conflict-serializable schedules.

Phase 1: Growing Phase

Transaction may obtain locks
Transaction may not release locks

Phase 2: Shrinking Phase

Transaction may release locks
Transaction may not obtain locks

The protocol assures serializability. It can be shown that the
transactions can be serialized in the order of their lock points (i.e.,
the point where a transaction acquired its final lock).

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 7 / 72



Lock-Based Protocols

The Two-Phase Locking Protocol/2

There can be conflict serializable schedules that cannot be obtained if
two-phase locking is used.

However, in the absence of extra information (e.g., ordering of access
to data), two-phase locking is needed for conflict serializability.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 8 / 72



Lock-Based Protocols

Lock Conversions

Two-phase locking with lock conversions:
First Phase:

can acquire lock-S on item
can acquire lock-X on item
can convert lock-S to lock-X (upgrade)

Second Phase:

can release lock-S on item
can release lock-X on item
can convert lock-X to lock-S (downgrade)

This protocol assures serializability. But still relies on the programmer
to insert the various locking instructions.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 9 / 72



Lock-Based Protocols

Automatic Acquisition of Locks/1

A transaction Ti issues the standard read/write instruction, without
explicit locking calls.

The operation read(D) is processed as:

if Ti has a lock on D then
read(D)

else begin
if necessary wait until no other
transaction has a lock-X on D

grant Ti a lock-S on D
read(D)
end

end if

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 10 / 72



Lock-Based Protocols

Automatic Acquisition of Locks/2

write(D) is processed as:

if Ti has a lock-X on D then
write(D)

else begin
if necessary wait until no other transaction has any lock on D
if Ti has a lock-S on D then

upgrade lock on D to lock-X
else

grant Ti a lock-X on D
end if
write(D)
end

end if

All locks are released after commit or abort

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 11 / 72



Lock-Based Protocols

Deadlocks/1

Consider the partial schedule
T3 T4

lock-x(B)
read(B)
B := B − 50
write(B)

lock-s(A)
read(A)
lock-s(B)

lock-x(A)

Neither T3 nor T4 can make progress — executing lock-S(B) causes
T4 to wait for T3 to release its lock on B, while executing lock-X(A)
causes T3 to wait for T4 to release its lock on A.

Such a situation is called a deadlock.

To handle deadlock, one of T3 or T4 must be aborted and its locks
released.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 12 / 72



Lock-Based Protocols

Deadlocks/2

Two-phase locking does not ensure freedom from deadlocks.

In addition to deadlocks, there is a possibility of starvation.

Starvation occurs if the concurrency control manager is badly
designed. For example:

A transaction may be waiting for an X-lock on an item, while a
sequence of other transactions request and are granted an S-lock on
the same item.
The same transaction is repeatedly rolled back due to deadlocks.

Concurrency control manager can be designed to prevent starvation.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 13 / 72



Lock-Based Protocols

Deadlocks/3

The potential for deadlock exists in most locking protocols.
Deadlocks are a necessary evil.

When a deadlock occurs there is a possibility of cascading rollbacks.

Cascading roll-back is possible under two-phase locking. To avoid
this, follow a modified protocol called strict two-phase locking — a
transaction must hold all its exclusive locks till it commits/aborts.

Rigorous two-phase locking is even stricter. Here, all locks are held till
commit/abort. In this protocol transactions can be serialized in the
order in which they commit.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 14 / 72



Lock-Based Protocols

Implementation of Locking

A lock manager can be implemented as a separate process to which
transactions send lock and unlock requests

The lock manager replies to a lock request by sending a lock grant
messages (or a message asking the transaction to roll back, in case of
a deadlock)

The requesting transaction waits until its request is answered

The lock manager maintains a data-structure called a lock table to
record granted locks and pending requests

The lock table is usually implemented as an in-memory hash table
indexed on the name of the data item being locked

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 15 / 72



Lock-Based Protocols

Lock Table
I7

T23

I23

T1 T8 T2

I912

T23

I4

T1 T23

I44

T8

granted

waiting

Dark blue rectangles indicate granted locks;
light blue indicate waiting requests

Lock table also records the type of lock
granted or requested

New request is added to the end of the
queue of requests for the data item, and
granted if it is compatible with all earlier
locks

Unlock requests result in the request being
deleted, and later requests are checked to
see if they can now be granted

If transaction aborts, all waiting or granted
requests of the transaction are deleted

lock manager may keep a list of locks held
by each transaction, to implement this
efficiently

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 16 / 72



Lock-Based Protocols

Deadlock Handling

A system is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

How to deal with deadlocks?

1. Detection and Recovery: Allow deadlocks to happen and recover from
them.

2. Prevention: Ensure that the system will never enter into a deadlock
state.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 17 / 72



Lock-Based Protocols

Deadlock Detection/1

Deadlocks can be described as a wait-for graph, which consists of a
pair G = (V ,E ),

V is a set of vertices (all the transactions in the system)
E is a set of edges; each element is an ordered pair Ti → Tj .

If Ti → Tj is in E , then there is a directed edge from Ti to Tj ,
implying that Ti is waiting for Tj to release a data item.

When Ti requests a data item currently being held by Tj , then the
edge Ti → Tj is inserted in the wait-for graph. This edge is removed
only when Tj is no longer holding a data item needed by Ti .

The system is in a deadlock state if and only if the wait-for graph has
a cycle. Must invoke a deadlock-detection algorithm periodically to
look for cycles.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 18 / 72



Lock-Based Protocols

Deadlock Detection/2

T18

T17

T19

T20

Wait-for graph without a cycle

T18

T17

T19

T20

Wait-for graph with a cycle

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 19 / 72



Lock-Based Protocols

Deadlock Recovery

When deadlock is detected:

Pick a victim: Some transaction will have to be rolled back (made a
victim) to break deadlock.

select that transaction as victim that will incur minimum cost
starvation happens if same transaction is always chosen as victim
include the number of rollbacks in the cost factor to avoid starvation

How far to roll back victim transaction?

total rollback: abort the transaction and then restart it
more efficient to roll back transaction only as far as necessary to break
deadlock

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 20 / 72



Lock-Based Protocols

Deadlock Prevention Strategies/1

1. Predeclaration: Require that each transaction locks all its data items
before it begins execution.

2. Lock Order:

Impose a (partial) order on all data items. Transaction can lock only in
the specified order.
Works also with 2PL if data items are always locked in ascending order.

easy to implement on top of existing 2PL implementation
problem: need to know data items to be locked upfront

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 21 / 72



Lock-Based Protocols

Deadlock Prevention Strategies/2

3. Preemptive and non-preemptive based on timestamps:

Use transaction timestamps for the sake of deadlock prevention alone.
Preemption: steal lock from a transaction that currently holds the lock
by aborting it.
Two schemes:

wait-die scheme – non-preemptive
wound-wait scheme – preemptive

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 22 / 72



Lock-Based Protocols

Deadlock Prevention Strategies/3

Wait-Die: non-preemptive

older transaction may wait for younger one to release data item (older
means smaller timestamp).
Younger transactions never wait for older ones; they are rolled back
instead.

Wound-Wait: preemptive

older transaction wounds (forces rollback) younger transaction instead
of waiting for it.
Younger transactions may wait for older ones.

Both in wait-die and in wound-wait schemes, a rolled back
transactions is restarted with its original timestamp.

Older transactions thus have precedence over newer ones, and
starvation is hence avoided.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 23 / 72



Lock-Based Protocols

Deadlock Prevention Strategies/4

4. Timeout-Based schemes:

A transaction waits for a lock only for a specified amount of time.
If the lock has not been granted within that time, the transaction is
rolled back and restarted.
Thus, deadlocks are not possible.
Easy to implement, but starvation is possible.
Also difficult to determine good value of the timeout interval.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 24 / 72



Lock-Based Protocols

Multiple Granularity

Define a hierarchy of data item granularities, where the small
granularities are nested within larger ones.

Can be represented graphically as a tree.

When a transaction locks a node in the tree explicitly, it implicitly
locks all the node’s descendents in the same mode.

Granularity of locking (level in tree where locking is done):

fine granularity (lower in tree): high concurrency, high locking overhead
coarse granularity (higher in tree): low locking overhead, low
concurrency

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 25 / 72



Lock-Based Protocols

Example of Granularity Hierarchy

DB

A1

Fa

ra1 ra2 ran

Fb

rb1 rbk

A2

Fc

rc1 rcm

The levels, starting from the coarsest (top) level are

database
area
file
record

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 26 / 72



Lock-Based Protocols

Intention Lock Modes

In addition to S and X lock modes, there are three additional lock
modes with multiple granularity.

If a node n is locked in mode

intention-shared (IS), then at least one lower-level subtree of n is
locked in shared mode;
intention-exclusive (IX), then at least one lower-level subtree of n is
locked in exclusive mode;
shared and intention-exclusive (SIX): then n is locked in shared mode
and a at least one lower-level subtree of n is locked in exclusive mode.

Intention locks (or their absence) allow a higher level node to be
locked in S or X mode without having to check all descendent nodes.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 27 / 72



Lock-Based Protocols

Compatibility Matrix with Intention Lock Modes

The compatibility matrix for all lock modes is:

IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 28 / 72



Lock-Based Protocols

Multiple Granularity Locking Scheme

Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in any

mode.
3. A node Q can be locked by Ti in S or IS mode only if the parent of Q

is currently locked by Ti in either IX or IS mode.
4. A node Q can be locked by Ti in X , SIX , or IX mode only if the

parent of Q is currently locked by Ti in either IX or SIX mode.
5. Ti can lock a node only if it has not previously unlocked any node

(that is, Ti is two-phase).
6. Ti can unlock a node Q only if none of the children of Q are currently

locked by Ti .

Observe that locks are acquired in root-to-leaf order, whereas they are
released in leaf-to-root order.

Lock granularity escalation: in case there are too many locks at a
particular level, switch to higher granularity S or X lock

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 29 / 72



Timestamp-Based Protocols

Outline

1 Lock-Based Protocols

2 Timestamp-Based Protocols

3 Validation-Based Protocols

4 Multiversion Schemes

5 Insert, Delete, and Concurrency in Indexes

6 Weak Levels of Consistency

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 30 / 72



Timestamp-Based Protocols

Timestamp-Based Protocols/1

Each transaction is issued a timestamp when it enters the system. If
an old transaction Ti has time-stamp TS(Ti ), a new transaction Tj is
assigned time-stamp TS(Tj) such that TS(Ti ) < TS(Tj).

The protocol manages concurrent execution such that the
time-stamps determine the serializability order.

In order to assure such behavior, the protocol maintains for each data
Q two timestamp values:

W -timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully.
R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 31 / 72



Timestamp-Based Protocols

Timestamp-Based Protocols/2

The timestamp ordering protocol ensures that any conflicting read
and write operations are executed in timestamp order.

Suppose a transaction Ti issues a read(Q)
1. If TS(Ti ) < W -timestamp(Q), then Ti needs to read a value of Q

that was already overwritten.

Hence, the read operation is rejected, and Ti is rolled back.

2. Otherwise, the read operation is executed, and R-timestamp(Q) is set
to max(R-timestamp(Q),TS(Ti )).

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 32 / 72



Timestamp-Based Protocols

Timestamp-Based Protocols/3

Suppose that transaction Ti issues write(Q).
1. If TS(Ti ) < R-timestamp(Q), then the value of Q that Ti is producing

was needed previously, and the system assumed that that value would
never be produced.

Hence, the write(Q) operation is rejected, and Ti is rolled back.

2. If TS(Ti ) < W -timestamp(Q), then Ti is attempting to write an
obsolete value of Q.

Hence, this write(Q) operation is rejected, and Ti is rolled back.

3. Otherwise, the write(Q) operation is executed, and W -timestamp(Q)
is set to TS(Ti ).

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 33 / 72



Timestamp-Based Protocols

Example Use of the Protocol

A partial schedule for several data items for transactions with timestamps
1, 2, 3, 4, 5

T1 T2 T3 T4 T5

read(X )
read(Y )

read(Y )
write(Y )
write(Z )

read(Z )
read(Z )
abort

read(X )
read(W )

write(W )
abort

write(Y )
write(Z )

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 34 / 72



Timestamp-Based Protocols

Correctness of Timestamp-Ordering Protocol

The timestamp-ordering protocol guarantees serializability since all
the arcs in the precedence graph are of the form:

transaction
with smaller
timestamp

transaction
with larger
timestamp

Timestamp protocol ensures freedom from deadlock as no transaction
ever waits.

But the schedule may not be cascade-free, and may not even be
recoverable.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 35 / 72



Timestamp-Based Protocols

Timestamp-Ordering: Recoverability and Cascadeless

Read rule: If j > i , then Tj is allowed to read a value written by Ti .

Therefore, timestamp-ordering protocol allows:

non-recoverable schedules: Tj reads value of uncommitted Ti ; Tj

commits before Ti

cascading rollbacks: Tj reads value of uncommitted Ti ; when Ti aborts
then also Tj must abort

Solution 1:

writes are all performed at the end of the transaction
the writes form an atomic action: no transaction can read any of the
written values during write
a transaction that aborts is restarted with a new timestamp

Solution 2: Limited form of locking: wait for data to be committed
before reading it

Solution 3: Use commit dependencies to ensure recoverability

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 36 / 72



Timestamp-Based Protocols

Thomas’ Write Rule

Modified version of the timestamp-ordering protocol in which obsolete
write operations may be ignored under certain circumstances.

Ti attempts to write data item Q:

if TS(Ti ) < W -timestamp(Q), then Ti is attempting to write an
obsolete value of Q
rather than rolling back Ti (as the timestamp ordering protocol would
do), this write operation can be ignored

Otherwise this protocol is the same as the timestamp ordering
protocol.

Thomas’ Write Rule allows greater potential concurrency.

Allows view-serializable schedules that are not conflict serializable.
Any view-serializable schedule that is not conflict serializable has
so-called blind writes (write(Q) without preceding read(Q))

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 37 / 72



Validation-Based Protocols

Outline

1 Lock-Based Protocols

2 Timestamp-Based Protocols

3 Validation-Based Protocols

4 Multiversion Schemes

5 Insert, Delete, and Concurrency in Indexes

6 Weak Levels of Consistency

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 38 / 72



Validation-Based Protocols

Validation-Based Protocol/1

Execution of transaction Ti is done in three phases:

1. Read and execution phase: Transaction Ti writes only to temporary
local variables.

2. Validation phase: Transaction Ti performs a validation test to
determine if local variables can be written without violating
serializability.

3. Write phase: If Ti is validated, the updates are applied to the database;
otherwise, Ti is rolled back.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 39 / 72



Validation-Based Protocols

Validation-Based Protocol/2

Each transaction must go through the three phases in that order.

The three phases of concurrently executing transactions can be
interleaved.

Assume for simplicity that the validation and write phase occur
together, atomically and serially, i.e., only one transaction executes
validation/write at a time.

Also called optimistic concurrency control since transaction executes
fully in the hope that all will go well during validation

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 40 / 72



Validation-Based Protocols

Validation Test for Transaction Tj

Validation test: If for all Tk with validation(Tk) < validation(Ti ) one
of the following holds:

finish(Tk) < start(Ti )
start(Ti ) < finish(Tk) < validation(Ti ) and
the set of data items written by Tk does not intersect with the set of
data items read by Ti

then validation succeeds and Tj can be committed.

If validation fails, Tj is aborted.

Justification: Either the first condition is satisfied, and there is no
overlapping execution, or the second condition is satisfied and

the writes of Ti do not affect reads of Tk since they occur after Tk has
finished its reads
the writes of Tk do not affect reads of Ti since Ti does not read any
item written by Tk

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 41 / 72



Validation-Based Protocols

Schedule Produced by Validation

Example of schedule produced using validation
T25 T26

read(B)
read(B)
B := B − 50
read(A)
A := A+ 50

read(A)
< validate >
display(A+ B)

< validate >
write(B)
write(A)

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 42 / 72



Multiversion Schemes

Outline

1 Lock-Based Protocols

2 Timestamp-Based Protocols

3 Validation-Based Protocols

4 Multiversion Schemes

5 Insert, Delete, and Concurrency in Indexes

6 Weak Levels of Consistency

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 43 / 72



Multiversion Schemes

Multiversion Schemes

Multiversion schemes keep old versions of data item to increase
concurrency.

Multiversion Timestamp Ordering
Multiversion Two-Phase Locking

Each successful write results in the creation of a new version of the
data item written.

Use timestamps to label versions.

When a read(Q) operation is issued, select an appropriate version of
Q based on the timestamp of the transaction, and return the value of
the selected version.

Reads never have to wait as an appropriate version is returned
immediately.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 44 / 72



Multiversion Schemes

Multiversion Timestamp Ordering/1

Each data item Q has a sequence of versions < Q1,Q2, . . . ,Qm >.
Each version Qk contains three data fields:

Content — the value of version Qk .
W -timestamp(Qk) — timestamp of the transaction that created
(wrote) version Qk

R-timestamp(Qk) — largest timestamp of a transaction that
successfully read version Qk

When a transaction Ti creates a new version Qk of Q, Qk ’s
W -timestamp and R-timestamp are initialized to TS(Ti ).

R-timestamp of Qk is updated whenever a transaction Tj reads Qk ,
and TS(Tj) > R-timestamp(Qk).

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 45 / 72



Multiversion Schemes

Multiversion Timestamp Ordering/2

For at transaction Ti , Qk is the version of Q with the largest write
timestamp less than or equal to TS(Ti ).

Ti .read(Q) returns the content of version Qk .

Ti .write(Q):
1. if TS(Ti ) < R-timestamp(Qk), then transaction Ti is rolled back.
2. if TS(Ti ) = W -timestamp(Qk), the contents of Qk are overwritten
3. else a new version of Q is created.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 46 / 72



Multiversion Schemes

Multiversion Timestamp Ordering/3

Reads always succeed ⇒ fewer aborts than TSO without versions.

A write by Ti is rejected if some other transaction Tj that (in the
serialization order defined by the timestamps) should read Ti ’s write,
has already read a version created by a transaction older than Ti .

Multiversion Timestamp Ordering schedules are

serializable
not recoverable (extension to recoverable and cascadeless schedules like
for timestamp-based protocol)

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 47 / 72



Multiversion Schemes

Multiversion Two-Phase Locking/1

Differentiates between read-only and update transactions.

Update transactions:

Follow rigorous two-phase locking: Acquire locks for reads and writes,
and hold all locks up to the end of the transaction.

Each successful write creates a new version of the data item written.

Each version of a data item has a single timestamp whose value is
obtained from a counter ts-counter that is incremented during commit
processing.

Read-only transactions are assigned a timestamp by reading the
current value of ts-counter before they start execution; they follow the
multiversion timestamp-ordering protocol for performing reads.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 48 / 72



Multiversion Schemes

Multiversion Two-Phase Locking/2

When an update transaction wants to read a data item:

it obtains a shared lock on it, and reads the latest version.

When an update transaction wants to write an item

it obtains X -lock on the item, then creates a new version of the item,
finally sets this version’s timestamp to ∞.

When update transaction Ti completes, commit processing occurs:

Ti sets timestamp on the versions it has created to ts-counter + 1
Ti increments ts-counter by 1

Read-only transactions that start after Ti increments ts-counter will
see the values updated by Ti .

Read-only transactions that start before Ti increments the ts-counter
will see the value before the updates by Ti .

Only serializable schedules are produced.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 49 / 72



Multiversion Schemes

Multiversion Two-Phase Locking Example

T1 T2 T3 T4

—— begin ——

write(A)
—— begin ——

read(A)
—— begin ——

read(A)
read(B)

commit
write(A)

read(A)
—— begin ——

read(A)
commit

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 50 / 72



Multiversion Schemes

MVCC: Implementation Issues

Creation of multiple versions increases storage overhead

Extra tuples.
Extra space in each tuple for storing version information

.

Versions can, however, be garbage collected,

e.g. if Q has two versions Q5 and Q9, and the oldest active transaction
has timestamp > 9, than Q5 will never be required again.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 51 / 72



Multiversion Schemes

Snapshot Isolation/1

Motivation: Concurrent OLAP and OLTP queries.

OLAP (online analytic processing) queries read large amounts of data.
OLTP (online transaction processing) transactions update a few rows.
Combination results in many concurrency conflicts and poor
performance.

Solution 1: Give logical “snapshot” of database state to read only
transactions, read-write transactions use normal locking.

multiversion 2-phase locking
works well, but how does system know a transaction is read only?

Solution 2: Give snapshot of database state to every transaction, only
updates use 2-phase locking.

problem: variety of anomalies such as lost update can result

Solution 3: Snapshot isolation (next slide).

proposed by Berenson et al. (SIGMOD 1995)
variants implemented in many database systems (e.g. Oracle,
PostgreSQL, SQL Server 2005)

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 52 / 72



Multiversion Schemes

Snapshot Isolation/2

A transaction T1 executing
with Snapshot Isolation

takes snapshot of committed
data at start
always reads/modifies data
in its own snapshot
updates of concurrent
transactions are not visible
to T1

writes of T1 complete when
it commits
First-committer-wins rule:

Commits only if no other
concurrent transaction
has already written data
that T1 intends to write.

Initial values: X = 0,Y = 0,Z = 0
T1 T2 T3

W (Y := 1)
Commit

Start
R(Y ) → 1
W (Y := 2)

W (X := 2)
W (Z := 3)
Commit

Concurrent updates not visible R(Z ) → 0
Own updates are visible R(Y ) → 2
Not first-committer of X W (X := 3)

Commit-Req
Serialization error, T2 is rolled back Abort

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 53 / 72



Multiversion Schemes

Snapshot Read

Concurrent updates invisible to snapshot read

X0 = 100, Y0 = 0

T1 deposits 50 in Y T2 withdraws 50 from X

r1(X0, 100)
r1(Y0, 0)

r2(Y0, 0)
r2(X0, 100)
w2(X2, 50)

w1(Y1, 50)
r1(X0, 100) (update by T2 not visible)
r1(Y1, 50) (can see its own updates)

r2(Y0, 0) (update by T1 not visible)

X2 = 50, Y1 = 50

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 54 / 72



Multiversion Schemes

Snapshot Write: First Committer Wins

T1 deposits 50 in X T2 withdraws 50 from X

r1(X0, 100)
r2(X0, 100)
w2(X2, 50)

w1(X1, 150)
commit1

commit2 (Serialization Error T2 is rolled back)

Variant: ”First-updater-wins”
Check for concurrent updates when write occurs by locking item

but lock should be held till all concurrent transactions have finished

Differs only in when abort occurs, otherwise equivalent

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 55 / 72



Multiversion Schemes

Benefits of Snapshot Isolation

Reading is never blocked,

and also doesn’t block other transactions’ activities

Performance similar to Read Committed

Avoids the usual anomalies

No dirty read
No lost update
No non-repeatable read
Predicate based selects are repeatable (no phantoms)

Problems with snapshot isolation
Snapshot isolation does not always give serializable executions

Serializable: among two concurrent transactions, one sees the effects of
the other
In snapshot isolation: neither sees the effects of the other

Result: Integrity constraints can be violated

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 56 / 72



Multiversion Schemes

Snapshot Isolation/3

Example of problem with snapshot isolation

T1 : x := y
T2 : y := x
Initially x = 3 and y = 17

Serial execution: x =??, y =??
if both transactions start at the same time, with snapshot isolation:
x =??, y =??

Called skew write

Skew also occurs with inserts, e.g., a query that creates order
numbers as follows:

Find max order number among all orders
Create a new order with ordernumber = previousmax + 1

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 57 / 72



Multiversion Schemes

Snapshot Isolation Anomalies

Snapshot isolation breaks serializability when transactions modify
different items, each based on a previous state of the item the other
modified

not very common in practice

for example, the TPC-C benchmark runs correctly under snapshot
isolation
when transactions conflict due to modifying different data, there is
usually also a shared item they both modify too (like a total quantity)
so SI will abort one of them

but does occur

application developers should be careful about write skew

Using snapshots to verify primary/foreign key integrity can lead to
inconsistency

integrity constraint checking usually done outside of snapshot

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 58 / 72



Multiversion Schemes

Snapshot Isolation in Oracle and PostgreSQL/1

Warning: Snapshot isolation is used when isolation level is set to
serializable in Oracle and PostgreSQL (versions prior to 9.1)

Oracle implements ”first updater wins” rule

concurrent writer check is done at time of write, not at commit time
allows transactions to be rolled back earlier
Oracle and PostgreSQL < 9.1 do not support true serializable execution

PostgreSQL 9.1 introduced ”Serializable Snapshot Isolation” (SSI)

guarantees true serializabilty

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 59 / 72



Multiversion Schemes

Snapshot Isolation in Oracle and PostgreSQL/2

Can sidestep snapshot isolation for specific queries by using select ..
for update in Oracle and PostgreSQL

Select for update (SFU) treats all data read by the query as if it were
also updated, preventing concurrent updates.

Example transaction:

1. select max (orderno) from orders for update
2. read value into local variable maxorder
3. insert into orders (maxorder + 1, . . . )

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 60 / 72



Insert, Delete, and Concurrency in Indexes

Outline

1 Lock-Based Protocols

2 Timestamp-Based Protocols

3 Validation-Based Protocols

4 Multiversion Schemes

5 Insert, Delete, and Concurrency in Indexes

6 Weak Levels of Consistency

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 61 / 72



Insert, Delete, and Concurrency in Indexes

Insert and Delete Operations/1

If two-phase locking is used:

A delete operation may be performed only if the transaction deleting
the tuple has an exclusive lock on the tuple to be deleted.
A transaction that inserts a new tuple into the database is given an
X-mode lock on the tuple

Insertions and deletions can lead to the phantom phenomenon:

T1 scans a relation r (e.g., find sum of balances of all accounts in
Perryridge).
T2 inserts a tuple into relation r (e.g., insert a new account at
Perryridge).
T1 and T2 (conceptually) conflict in spite of not accessing any tuple in
common.

If only tuple locks are used, non-serializable schedules can result

for example, the scan transaction T1 does not see the new account, but
reads some other tuple updated by transaction T2

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 62 / 72



Insert, Delete, and Concurrency in Indexes

Insert and Delete Operations/2

The transaction scanning the relation is reading information that
indicates what tuples the relation contains, while a transaction
inserting a tuple updates the same information.

The conflict should be detected, e.g. by locking the information.

One solution:

Associate a data item X with the relation, to represent the information
about what tuples the relation contains.
Transactions scanning the relation acquire a shared lock on X .
Transactions inserting or deleting a tuple acquire an exclusive lock on
data item X .
Note: locks on X do not conflict with locks on individual tuples.

Above protocol provides very low concurrency for insertions/deletions.

Index locking protocol

prevents the phantom phenomenon
provide higher concurrency

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 63 / 72



Insert, Delete, and Concurrency in Indexes

Index Locking Protocol

Index locking protocol:

Every relation must have at least one index.
A transaction can access tuples only after finding them through one or
more indices on the relation.
A transaction Ti that performs a lookup must lock all the index leaf
nodes that it accesses, in S-mode

even if the leaf node does not contain any tuple satisfying the index
lookup (e.g. for a range query, no tuple in a leaf is in the range)

A transaction Ti that inserts, updates, or deletes a tuple ti in relation r

must update all indices of r
must obtain exclusive locks on all index leaf nodes affected by the
insert/update/delete

The rules of the two-phase locking protocol must be observed

Guarantees that the phantom phenomenon won’t occur

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 64 / 72



Insert, Delete, and Concurrency in Indexes

Next-Key Locking

Problem with index-locking protocol:

to prevent phantom reads the entire index leaf must be locked
results in poor concurrency if there are many inserts

Alternative: for an index lookup

Lock all key values that satisfy index lookup (i.e., match lookup value
or fall into lookup range).
Lock next key value in index (after lookup value or range) as well.
Lock mode: S for lookups, X for insert/delete/update.

Ensures that range queries will conflict with inserts/deletes/updates

regardless of which happens first, as long as both are concurrent

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 65 / 72



Insert, Delete, and Concurrency in Indexes

Concurrency in Index Structures/1

Indices are unlike other database items in that their only job is to help
in accessing data.

Index-structures are typically accessed very often, much more than
other database items.

Treating index-structures like other database items, e.g. by 2-phase
locking of index nodes can lead to low concurrency.

There are several index concurrency protocols where locks on internal
nodes are released early, and not in a two-phase fashion.

It is acceptable to have nonserializable concurrent access to an index as
long as the accuracy of the index is maintained.
In particular, the exact values read in an internal node of a B+-tree are
irrelevant so long as we land up in the correct leaf node.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 66 / 72



Insert, Delete, and Concurrency in Indexes

Concurrency in Index Structures/2

Crabbing protocol for B+-trees. During search/insertion/deletion:

first lock the root node in shared mode.
after locking all required children of a node in shared mode, release the
lock on the node.
during insertion/deletion, upgrade leaf node locks to exclusive mode.
when splitting or coalescing requires changes to a parent, lock the
parent in exclusive mode.

The crabbing protocol can cause deadlocks

searches coming down the tree deadlock with updates going up the tree
can abort and restart search, without affecting transaction

B-link tree protocol:

Intuition: release lock on parent before acquiring lock on child
Deal with changes that may have happened between lock release and
acquire.
Requires forward links between sibling nodes in B+-tree (in addition to
the forward links between leaves that exist anyways).

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 67 / 72



Weak Levels of Consistency

Outline

1 Lock-Based Protocols

2 Timestamp-Based Protocols

3 Validation-Based Protocols

4 Multiversion Schemes

5 Insert, Delete, and Concurrency in Indexes

6 Weak Levels of Consistency

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 68 / 72



Weak Levels of Consistency

Weak Levels of Consistency

Degree-two consistency: differs from two-phase locking in that S-locks
may be released at any time, and locks may be acquired at any time

X-locks must be held till end of transaction
Serializability is not guaranteed, programmer must ensure that no
erroneous database state will occur

Cursor stability:

For reads, each tuple is locked, read, and lock is immediately released
X-locks are held till end of transaction
Special case of degree-two consistency

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 69 / 72



Weak Levels of Consistency

Weak Levels of Consistency in SQL

SQL allows non-serializable executions
Repeatable read: allows only committed records to be read, and
repeating a read should return the same value (so read locks should be
retained)

however, the phantom phenomenon need not be prevented
T1 may see some records inserted by T2, but may not see others
inserted by T2.

Read committed: same as degree two consistency, but most systems
implement it as cursor-stability.
Read uncommitted: allows even uncommitted data to be read

In many database systems, read committed is the default consistency
level.

The isolation level can be changed when required:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 70 / 72



Weak Levels of Consistency

Transactions across User Interaction/1

Many applications need transaction support across user interactions

Can’t use locking
Don’t want to reserve database connection per user

Application level concurrency control

Each tuple has a version number
Transaction notes version number when reading tuple

select r .balance, r .version into :A, :version
from r where acctId = 23

When writing tuple, check that current version number is same as the
version when tuple was read

update r set r .balance = r .balance + :deposit
where acctId = 23 and r .version = :version

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 71 / 72



Weak Levels of Consistency

Transactions across User Interaction/2

Equivalent to optimistic concurrency control without validating read
set

Used internally in Hibernate ORM system, and manually in many
applications

Unlike snapshot isolation, reads are not guaranteed to be from a
single snapshot.

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2024/25 72 / 72


