Databases 2

Transactions

Augsten (Univ. Salzburg)

Nikolaus Augsten

nikolaus.augsten@plus.ac.at
FB Informatik
Universitat Salzburg

M database
research group

https://dbresearch.uni-salzburg.at

WS 2023/24
Version January 9, 2024

DB2 — Transactions WS 2023/24

Outline

@ Transaction Concept
© Concurrent Executions
© Serializability

@ Recoverability

© Concurrency Protocols
@ Deadlocks

@ !mplementation of Isolation / SQL

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Transaction Concept

@ Transaction Concept

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Transaction Concept

What is a Transaction?

SR WL

6.
@ [wo main issues:

@ A transaction is a unit of program execution that accesses and
possibly updates various data items.

@ Example: transfer $50 from account A to account B
1.

R(A)

A+ A—-50
W(A)

R(B)

B + B+ 50
W(B)

1. concurrent execution of multiple transactions
2. failures of various kind (e.g., hardware failure, system crash)

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Transaction Concept

ACID Properties

@ Database system must guarantee ACID for transactions:

e Atomicity: either all operations of the transaction are executed or none

e Consistency: execution of a transaction in isolation preserves the
consistency of the database

e Isolation: although multiple transactions may execute concurrently,
each transaction must be unaware of the other concurrent transactions.

e Durability: After a transaction completes successfully, changes to the
database persist even in case of system failure.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Transaction Concept
Atomicity

@ Example: transfer $50 from account A to account B
1. R(A)

A+ A—-50

W (A)

R(B)

B < B + 50

6. W(B)

e What if failure (hardware or software) after step 37

oW

@ money is lost
e database is inconsistent

@ Atomicity:
e either all operations or none
e updates of partially executed transactions not reflected in database

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Transaction Concept

Consistency

@ Example: transfer $50 from account A to account B
1. R(A)

2. A+ A-50

3. W(A)

4. R(B)

5. B+~ B+50

6. W(B)

@ Consistency in example: sum A + B must be unchanged

@ Consistency in general:

o explicit integrity constraints (e.g., foreign key)
o implicit integrity constraints (e.g., sum of all account balances of a
bank branch must be equal to branch balance)

@ [ransaction:

@ must see consistent database
e during transaction inconsistent state allowed
e after completion database must be consistent again

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Transaction Concept

Isolation — Motivating Example

@ Example: transfer $50 from account A to account B
1. R(A)
A+ A—-50
W(A)
R(B)
B < B+ 50
W (B)
@ Imagine second transaction T5:
o Tr: R(A),R(B), print(A+ B)
e [, is executed between steps 3 and 4
e T, sees an inconsistent database and gives wrong result

SR W

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Transaction Concept

Isolation

@ Trivial isolation: run transactions serially

@ Isolation for concurrent transactions: For every pair of transactions T;
and T;, it appears to T; as if either T; finished execution before T;
started or T; started execution after T; finished.

@ Schedule:

e specifies the chronological order of a sequence of instructions from
various transactions

e equivalent schedules result in identical databases if they start with
identical databases

@ Serializable schedule:

@ equivalent to some serial schedule
e serializable schedule of T1 and T2 is either equivalent to T1, T2 or
72, T1

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Transaction Concept

Durability

@ When a transaction is done it commits.

@ Example: transaction commits too early

transaction writes A, then commits
A is written to the disk buffer
then system crashes

")

)

]

o value of A is lost

@ Durability: After a transaction has committed, the changes to the
database persist even in case of system failure.

@ Commit only after all changes are permanent:

e either written to log file or directly to database files
e database must recover in case of a crash

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Transaction Concept

Transaction State/1

@ Active — the initial state; the transaction stays in this state while it
Is executing

@ Partially committed — after the final statement has been executed.

@ Failed — after the discovery that normal execution can no longer
proceed.

@ Aborted — after the transaction has been rolled back and the
database restored to its state prior to the start of the transaction.
Two options after it has been aborted:

e Restart the transaction
@ can be done only if no internal logical error

e Kill the transaction

@ Committed — after successful completion.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Transaction Concept

Transaction State/2

partially
committed

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrent Executions

© Concurrent Executions

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrent Executions

Concurrent Executions

@ Multiple transactions are allowed to run concurrently in the system.

@ Advantages of concurrent transactions:

e Increased processor and disk utilization, leading to better transaction
throughput, e.g., one transaction can be using the CPU while another
is reading from or writing to the disk

e Reduced average response time for transactions: short transactions
need not wait behind long ones.

@ Concurrent transactions require concurrency control protocol:

e mechanisms to achieve isolation
e control the interaction among the concurrent transactions in order to
prevent them from destroying the consistency of the database

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrent Executions

Schedules

@ Schedule: a sequence of instructions that specify the chronological
order in which instructions of concurrent transactions are executed:

@ must consist of all instructions of the concurrent transactions:
e must preserve the order in which the instructions appear in each
individual transaction.

@ A transaction that successfully completes its execution will have a
commit instruction as the last statement.

@ A transaction that fails to successfully complete its execution will
have an abort instruction as the last statement.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrent Executions

Schedule 1

@ Let T7 transfer $50 from A to B, and T» transfer 10% of the balance
from A to B.

@ An example of a serial schedule in which T7 is followed by T»:

! T2

read(A)

A=A-50

write(A)

read(B)

B := B+ 50

write(B)

commit
read(A)
temp .= A% 0.1
A:=A—temp
write(A)
read(B)
B := B + temp
write(B)
commit

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrent Executions

Schedule 2

@ A serial schedule in which T, is followed by T7:

! T2
read(A)
temp .= A% 0.1
A:=A—temp
write(A)
read(B)
B := B+ temp
write(B)
commit

read(A)

A:=A-50

write(A)

read(B)

B := B +50

write(B)

commit

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrent Executions

Schedule 3

@ Let T; and T, be the transactions defined previously. The following
schedule is not a serial schedule, but it is equivalent to Schedule 1.

T T2

read(A)

A:=A-50

write(A)
read(A)
temp := A% 0.1
A:=A— temp
write(A)

read(B)

B :=B+50

write(B)

commit
read(B)
B := B + temp
write(B)
commit

Note — In schedules 1, 2 and 3, the sum “A+ B" is preserved.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrent Executions

Schedule 4

@ The following concurrent schedule does not preserve the sum of

IIA _|_ B”

T T2

read(A)

A:=A-50
read(A)
temp .= A% 0.1
A:=A—temp
write(A)
read(B)

write(A)

read(B)

B := B +50

write(B)

commit
B .= B+ temp
write(B)
commit

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Serializability

© Serializability

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Serializability

Concurrent Executions

@ Basic Assumption — Each transaction preserves database
consistency.
@ Thus, serial execution of a set of transactions preserves database

consistency.

@ A (possibly concurrent) schedule is serializable if it is equivalent to a
serial schedule. Different forms of schedule equivalence give rise to
the notions of:

e conflict serializability
e view serializability

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Serializability

Simplified model of transactions

@ We ignore operations other than read and write instructions

@ We assume that transactions may perform arbitrary computations on
data in local buffers in between reads and writes.

@ Our simplified schedules consist of only read and write instructions.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Serializability

Conflicting Instructions

@ Conflicts of read and write instructions:

Il T;— | lj=read | [; = write
I; = read no conflict | conflict
[; = write conflict conflict

@ Intuitively, a conflict between two instructions /; and /; forces a
(logical) temporal order between them.

@ If /; and /; are consecutive in a schedule and they do not conflict,
their results would remain the same even if they had been
interchanged in the schedule.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Serializability

Conflict Serializability/1

@ If a schedule S can be transformed into a schedule S’ by a series of
swaps of non-conflicting instructions, then S and S’ are conflict

equivalent.
@ A schedule S is conflict serializable if it is conflict equivalent to a
serial schedule.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Serializability

Conflict Serializability /2

@ Schedule 3 and (serial) Schedule 6 are conflict equivalent, therefore
Schedule 3 is serializable.

T T2 T T2
read(A) read(A)
write(A) write(A)
read(A) read(B)
write(A) write(B)
read(B) read(A)
write(B) write(A)
read(B) read(B)
write(B) write(B)
Table: Schedule 3 Table: Schedule 6

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Serializability

Conflict Serializability /3

@ Example of a schedule that is not conflict serializable:

T3 Ty
read(Q)

write(Q)
read(Q)

@ We are unable to swap instructions in the above schedule to obtain
either the serial schedule < T3, T4 >, or the serial schedule
< Tgq, T3 >.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Serializability

Precedence Graph

@ Consider some schedule of a set of transactions Ty, To,..., T,

@ Precedence graph — a direct graph where the vertices are the
transactions (names).

@ We draw an arc from T; to T; if the two transaction conflict, and T;
accessed the data item on which the conflict arose earlier.

@ We may label the arc by the item that was accessed.

e Example

@

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Serializability

Testing for Conflict Serializability

@ A schedule is conflict serializable if and only if
its precedence graph is acyclic.

@ Cycle-detection algorithms exist which take
order n? time, where n is the number of
vertices in the graph.

o (Better algorithms take order n+ e where e
is the number of edges.)

@ If the precedence graph is acyclic, the
serializability order can be obtained by a
topological sorting of the graph.

e That is, a linear order consistent with the
partial order of the graph.

e For example, a serializability order for the
schedule (a) would be one of either (b) or (c)

Augsten (Univ. Salzburg) DB2 — Transactions

WS 2023/24

Recoverability

@ Recoverability

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Recoverability

Recoverable Schedules

@ Recoverable schedule — if a transaction T; reads a data item
previously written by a transaction T; , then the commit operation of
T; must appear before the commit operation of T;.

@ The following schedule is not recoverable: Tg reads A written by Tg
but commits before Tg.

Ts To
read(A)
write(A)
read(A)
C+A
write(C)
commit
read(B)

@ If Tg aborts, Tg has read and copied an inconsistent database state.

@ Database must ensure that schedules are recoverable.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Recoverability

Cascading Rollbacks

@ Cascading rollback: a single transaction failure leads to a series of
transaction rollbacks.

@ Consider the following schedule where none of the transactions has
yet committed (so the schedule is recoverable):

T1o Tu T12
read(A)
read(B)
write(A)

read(A)

write(A)

read(A)

abort

If T1o fails, T11 and T1» must also be rolled back.

@ Can lead to the undoing of a significant amount of work.

WS 2023/24

Augsten (Univ. Salzburg) DB2 — Transactions

Recoverability

Cascadeless Schedules

@ Cascadeless schedules — for each pair of transactions T; and T; such
that T; reads a data item previously written by T;, the commit
operation of T; appears before the read operation of T;.

@ Every cascadeless schedule is also recoverable.

@ Example of a schedule that is NOT cascadeless:

T10 T11 T12
read(A)
read(B)
write(A)

read(A)

write(A)

read(A)

abort

@ |t i1s desirable to restrict the schedules to those that are cascadeless.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrency Protocols

© Concurrency Protocols

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrency Protocols

Concurrency Protocols

@ A database must provide a mechanism that will ensure that all
possible schedules are both:

e serializable
e recoverable and preferably cascadeless
@ A concurrency protocol is a policy to guarantees serializable schedules.

@ Serial schedule: A policy in which only one transaction can execute at
a time provides a poor degree of concurrency.
@ Various protocols allow concurrent schedules that are serializable:

e lock-based protocols

e timestamp ordering protocols

e validation-based protocols

e multi-version concurrency control

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrency Protocols

Lock-Based Protocols/1

@ A lock i1s a mechanism to control concurrent access to a data item.
@ Data items can be locked in two modes:

1. exclusive (X) mode. Data item can be both read as well as written.
X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is requested
using lock-S instruction.

@ Lock requests are made to the concurrency-control manager by the
programmer. Transaction can proceed only after request is granted.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrency Protocols

Lock-Based Protocols/2

@ Lock-compatibility matrix:

@ A lock on an item is granted to a transaction if the requested lock is
compatible with locks already held on the item by other transactions.

Augsten (Univ. Salzburg) DB2 — Transactions

S X
S | true | false
X | false | false

e Any number of transactions can hold a shared lock on an item.
e If any transaction holds an exclusive lock on the item, no other
transaction may hold any lock on the item.

@ If a lock cannot be granted, the requesting transaction is made to
wait till all incompatible locks held by other transactions have been
released. The lock is then granted.

WS 2023/24

Concurrency Protocols
Lock-Based Protocols/3

@ Example of a transaction performing locking:
T>: lock-S(A)
read(A)
unlock(A)
lock-S(B)
read(B)
unlock(B)
display(A + B)

@ Locking is not sufficient to guarantee serializability: if A gets updated
in-between the read of A and B, the displayed sum is wrong.

@ A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks. Locking protocols restrict the set of
possible schedules.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrency Protocols

The Two-Phase Locking Protocol/1

@ In the Two-Phase Locking (2PL) protocol, each transaction must go
through two phases that restrict the order in which locks can be
granted and released.

@ Phase 1: Growing Phase

e transaction may obtain locks
e transaction may not release locks

@ Phase 2: Shrinking Phase

e transaction may release locks
e transaction may not obtain locks

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrency Protocols

The Two-Phase Locking Protocol /2

@ The 2PL protocol guarantees conflict serializability.

@ The transactions can be serialized in the order of their lock points
(i.e., the point where a transaction acquired its final lock).

@ The set of 2PL schedules is a subset of conflict serializable schedules,

I.e., there can be conflict serializable schedules that cannot be
obtained with 2PL.

@ 2PL is necessary: In the absence of extra information (e.g., ordering
of access to data) a locking protocol that does not follow 2PL cannot
guarantee conflict serializability.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrency Protocols

Timestamp Ordering Protocols

@ Each transaction gets a timestamp when it enters the system.

@ The protocol manages concurrent execution such that the
time-stamps determine the serializability order.
@ Each data item @ gets two timestamp values:
e Write timestamp: timestamp of youngest transaction that wrote Q.
e Read timestamp: timestamp of youngest transaction that read Q.

@ The timestamp ordering protocol ensures that any conflicting
operations are executed in timestamp order.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrency Protocols

Validation-Based Protocols

@ Optimistic approach: Execute transaction first and check for
serializability problems at the end.

@ Execution of transaction T; is done in three phases:

1. Read and execution phase: Transaction T; writes only to temporary
local variables.

2. Validation phase: Transaction T; performs a validation test to
determine if local variables can be written without violating
serializability.

3. Write phase: If T; is validated, the updates are applied to the
database; otherwise, T; is rolled back.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Concurrency Protocols

Multiversion Concurrency Control (MVCC)

@ MVCC schemes keep old versions of data item to increase
concurrency.

@ Each successful write results in the creation of a new version of the
written data item.

@ Readers are never blocked: an appropriate version of the data item is
returned based on the timestamp of the reading transaction.

@ Snapshot Isolation: MVCC scheme implemented e.g. in PostgreSQL.

e each transaction gets a snapshot (conceptually a copy) of the database
at its start

e transaction operates on its snapshot and does not see updates of other
transactions

o conflicting updates are dealed with at time of update (first updater
wins) or commit (first committer wins)

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Deadlocks

@ Deadlocks

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Deadlocks

Deadlocks/1

@ Consider the partial schedule

T3 T4

lock-x(B)

read(B)

B := B —50

write(B)
lock-s(A)
read(A)
lock-s(B)

lock-x(A)

@ Neither T3 nor T4 can make progress — executing lock-S(B) causes
Ty to wait for T3 to release its lock on B, while executing lock-X(A)
causes I3 to wait for T4 to release its lock on A.

@ Such a situation is called a deadlock.

@ To handle the deadlock, one of T3 or T4 must be aborted and its
locks released.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Deadlocks

Deadlocks/2

@ Two-phase locking does not ensure freedom from deadlocks.

@ In addition to deadlocks, there is a possibility of starvation.

@ Starvation occurs if the concurrency control manager is badly
designed. For example:

e The same transaction is repeatedly rolled back due to deadlocks.
e A transaction waits for an X-lock on an item, while a sequence of other
transactions request and are granted an S-lock on the same item.

@ Concurrency control manager can be designed to prevent starvation.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Deadlocks

Deadlocks/3

@ The potential for deadlock exists in most locking protocols.
Deadlocks are a necessary evil.

@ When a deadlock occurs there is a possibility of cascading rollbacks.

@ Cascading roll-back is possible under two-phase locking. To avoid
this, follow a modified protocol called strict two-phase locking — a
transaction must hold all its exclusive locks till it commits/aborts.

@ Rigorous two-phase locking is even stricter. Here, all locks are held
till commit/abort. In this protocol, transactions can be serialized in
the order in which they commit.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Deadlocks

Deadlock Handling

@ A system is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

@ How to deal with deadlocks?
1. Detection & Recovery: allow deadlocks to happen and recover from

the deadlock state.
2. Prevention: ensure that the system will never enter into a deadlock

state.

WS 2023/24

Augsten (Univ. Salzburg) DB2 — Transactions

Deadlocks
Deadlock Detection/1

@ Deadlocks can be described as a wait-for graph, which consists of a
pair G = (V, E),
o V is a set of vertices (all the transactions in the system)
o E is a set of edges; each element is an ordered pair T; — T;.
o If T; = T;isin E, then there is a directed edge from T; to T},
implying that T; is waiting for T; to release a data item.

@ When T; requests a data item currently being held by 7;, then the
edge T; — T; is inserted in the wait-for graph. This edge is removed
only when T; is no longer holding a data item needed by T;.

@ The system is in a deadlock state if and only if the wait-for graph has
a cycle. Must invoke a deadlock-detection algorithm periodically to
look for cycles.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Deadlocks
Deadlock Detection/2

«: N «:’°

Wait-for graph without a cycle Wait-for graph with a cycle

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Deadlocks

Deadlock Recovery

@ To recover from a deadlock state, some transaction must be aborted.

@ How to pick a victim (transaction to be aborted)?

e Select a transaction as victim that will incur minimum cost.
e Starvation happens if same transaction is always chosen as victim.
e Include the number of rollbacks into the cost factor to avoid starvation.

@ How far to roll back victim transaction?

e total rollback: abort the transaction and then restart it

e more efficient to roll back transaction only as far as necessary to break
deadlock

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Deadlocks

Deadlock Prevention Strategies/1

1. Predeclaration: Require that each transaction locks all its data items
before it begins execution.
e Problem: need to know data items to be locked upfront.

2. Lock Order: Impose order on all data items. Transaction can lock
only in the specified order.

e Easy to implement on top of existing 2PL implementation.
e Problem: need to know data items to be locked upfront.

3. Timeout-Based schemes:
e A transaction waits for a lock only for a specified amount of time.
e Roll back and restart transaction if lock cannot be granted within

timeout interval.
e Problem: difficult to determine good value of the timeout interval.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Deadlocks

Deadlock Prevention Strategies/?2

4. Preemptive and non-preemptive scheme based on timestamps:

o Transactions have a timestamps: Older transactions (smaller
timestamp) have precedence over younger transactions.

e Preemptive: Younger transaction is aborted if it holds a lock required
by an older one (called wound-wait scheme).

e Non-preemptive: Younger transaction is aborted if it request a lock
held by and older one (called wait-die scheme)

e A rolled back transactions is restarted with its original timestamp.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Implementation of Isolation / SQL

@ !mplementation of Isolation / SQL

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Implementation of Isolation / SQL

Weak Levels of Consistency

@ Concurrency control protocols make a trade-off between the amount
of concurrency they allow and the amount of overhead they impose.

@ Trade off accuracy for performance: Some applications are willing to
live with weak levels of consistency, allowing schedules that are not
serializable.

@ SQL defines three undesired phantomena of concurrent transactions
and isolation levels to avoid them.

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Implementation of Isolation / SQL

Undesirable Phenomena of Concurrent Transactions

@ Dirty read

e transaction reads data written by concurrent uncommitted transaction
e problem: read may return a value that was never in the database
because the writing transaction aborted

@ Non-repeatable read

o different reads on the same item within a single transaction give
different results (caused by other transactions)

e e.g., concurrent transactions T1: x = R(A), y = R(A), z=y — x and
To: W(A =2xA), then z can be either zero or the initial value of A
(should be zero!)

@ Phantom read

e repeating the same query later in the transaction gives a different set
of result tuples

e other transactions can insert new tuples during a scan

o e.g., “Q: get accounts with balance > 1000" gives two tuples the first
time, then a new account with balance > 1000 is inserted by an other
transaction; the second time @ gives three tuples

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Implementation of Isolation / SQL

Isolation Guarantees (SQL Standard)

@ Read uncommitted: dirty, non-repeatable, phantom

e reads may access uncommitted data
e writes do not overwrite uncommitted data

@ Read committed: non-repeatable, phantom

e reads can access only committed data
e cursor stability: in addition, read is repeatable within single SELECT

@ Repeatable read: phantom
e phantom reads possible

@ Serializable:
e none of the undesired phenomenas can happen

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

Implementation of Isolation / SQL

Transaction Definition in SQL

@ Data manipulation language must include a construct for specifying
the set of actions that comprise a transaction.

@ In SQL, a transaction begins implicitly.

o BEGIN [TRANSACTION ISOLATION LEVEL ..]
e Isolation levels: read committed, read uncommitted, repeatable read,
serializable

@ A transaction in SQL ends by:

o COMMIT commits current transaction and begins a new one.
e ROLLBACK causes current transaction to abort.

@ Typicallly, an SQL statement commits implicitly if it executes
successfully

e Implicit commit can be turned off by a database directive,
e.g. in JDBC, connection.setAutoCommit(false);

Augsten (Univ. Salzburg) DB2 — Transactions WS 2023/24

