
Databases 2
Transactions

Nikolaus Augsten
nikolaus.augsten@plus.ac.at

FB Informatik
Universität Salzburg

https://dbresearch.uni-salzburg.at

WS 2023/24
Version January 9, 2024

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 1 / 57

Outline

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Concurrency Protocols

6 Deadlocks

7 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 2 / 57

Transaction Concept

Inhalt

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Concurrency Protocols

6 Deadlocks

7 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 3 / 57

Transaction Concept

What is a Transaction?

A transaction is a unit of program execution that accesses and
possibly updates various data items.

Example: transfer $50 from account A to account B

1. R(A)
2. A← A− 50
3. W (A)
4. R(B)
5. B ← B + 50
6. W (B)

Two main issues:

1. concurrent execution of multiple transactions
2. failures of various kind (e.g., hardware failure, system crash)

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 4 / 57

Transaction Concept

ACID Properties

Database system must guarantee ACID for transactions:

Atomicity: either all operations of the transaction are executed or none
Consistency: execution of a transaction in isolation preserves the
consistency of the database
Isolation: although multiple transactions may execute concurrently,
each transaction must be unaware of the other concurrent transactions.
Durability: After a transaction completes successfully, changes to the
database persist even in case of system failure.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 5 / 57

Transaction Concept

Atomicity

Example: transfer $50 from account A to account B

1. R(A)
2. A← A− 50
3. W (A)
4. R(B)
5. B ← B + 50
6. W (B)

What if failure (hardware or software) after step 3?

money is lost
database is inconsistent

Atomicity:

either all operations or none
updates of partially executed transactions not reflected in database

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 6 / 57

Transaction Concept

Consistency

Example: transfer $50 from account A to account B

1. R(A)
2. A← A− 50
3. W (A)
4. R(B)
5. B ← B + 50
6. W (B)

Consistency in example: sum A+ B must be unchanged

Consistency in general:

explicit integrity constraints (e.g., foreign key)
implicit integrity constraints (e.g., sum of all account balances of a
bank branch must be equal to branch balance)

Transaction:

must see consistent database
during transaction inconsistent state allowed
after completion database must be consistent again

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 7 / 57

Transaction Concept

Isolation – Motivating Example

Example: transfer $50 from account A to account B

1. R(A)
2. A← A− 50
3. W (A)
4. R(B)
5. B ← B + 50
6. W (B)

Imagine second transaction T2:

T2 : R(A),R(B), print(A+ B)
T2 is executed between steps 3 and 4
T2 sees an inconsistent database and gives wrong result

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 8 / 57

Transaction Concept

Isolation

Trivial isolation: run transactions serially

Isolation for concurrent transactions: For every pair of transactions Ti

and Tj , it appears to Ti as if either Tj finished execution before Ti

started or Tj started execution after Ti finished.

Schedule:

specifies the chronological order of a sequence of instructions from
various transactions
equivalent schedules result in identical databases if they start with
identical databases

Serializable schedule:

equivalent to some serial schedule
serializable schedule of T1 and T2 is either equivalent to T1,T2 or
T2,T1

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 9 / 57

Transaction Concept

Durability

When a transaction is done it commits.

Example: transaction commits too early

transaction writes A, then commits
A is written to the disk buffer
then system crashes
value of A is lost

Durability: After a transaction has committed, the changes to the
database persist even in case of system failure.

Commit only after all changes are permanent:

either written to log file or directly to database files
database must recover in case of a crash

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 10 / 57

Transaction Concept

Transaction State/1

Active — the initial state; the transaction stays in this state while it
is executing

Partially committed — after the final statement has been executed.

Failed — after the discovery that normal execution can no longer
proceed.

Aborted — after the transaction has been rolled back and the
database restored to its state prior to the start of the transaction.
Two options after it has been aborted:

Restart the transaction

can be done only if no internal logical error

Kill the transaction

Committed — after successful completion.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 11 / 57

Transaction Concept

Transaction State/2

active

partially
committed

committed

failed aborted

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 12 / 57

Concurrent Executions

Inhalt

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Concurrency Protocols

6 Deadlocks

7 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 13 / 57

Concurrent Executions

Concurrent Executions

Multiple transactions are allowed to run concurrently in the system.

Advantages of concurrent transactions:

Increased processor and disk utilization, leading to better transaction
throughput, e.g., one transaction can be using the CPU while another
is reading from or writing to the disk
Reduced average response time for transactions: short transactions
need not wait behind long ones.

Concurrent transactions require concurrency control protocol:

mechanisms to achieve isolation
control the interaction among the concurrent transactions in order to
prevent them from destroying the consistency of the database

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 14 / 57

Concurrent Executions

Schedules

Schedule: a sequence of instructions that specify the chronological
order in which instructions of concurrent transactions are executed:

must consist of all instructions of the concurrent transactions;
must preserve the order in which the instructions appear in each
individual transaction.

A transaction that successfully completes its execution will have a
commit instruction as the last statement.

A transaction that fails to successfully complete its execution will
have an abort instruction as the last statement.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 15 / 57

Concurrent Executions

Schedule 1

Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance
from A to B.

An example of a serial schedule in which T1 is followed by T2:

T1 T2

read(A)
A := A− 50
write(A)
read(B)
B := B + 50
write(B)
commit

read(A)
temp := A ∗ 0.1
A := A− temp
write(A)
read(B)
B := B + temp
write(B)
commit

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 16 / 57

Concurrent Executions

Schedule 2

A serial schedule in which T2 is followed by T1:

T1 T2

read(A)
temp := A ∗ 0.1
A := A− temp
write(A)
read(B)
B := B + temp
write(B)
commit

read(A)
A := A− 50
write(A)
read(B)
B := B + 50
write(B)
commit

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 17 / 57

Concurrent Executions

Schedule 3

Let T1 and T2 be the transactions defined previously. The following
schedule is not a serial schedule, but it is equivalent to Schedule 1.

T1 T2

read(A)
A := A− 50
write(A)

read(A)
temp := A ∗ 0.1
A := A− temp
write(A)

read(B)
B := B + 50
write(B)
commit

read(B)
B := B + temp
write(B)
commit

Note — In schedules 1, 2 and 3, the sum “A+ B” is preserved.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 18 / 57

Concurrent Executions

Schedule 4

The following concurrent schedule does not preserve the sum of
“A+ B”

T1 T2

read(A)
A := A− 50

read(A)
temp := A ∗ 0.1
A := A− temp
write(A)
read(B)

write(A)
read(B)
B := B + 50
write(B)
commit

B := B + temp
write(B)
commit

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 19 / 57

Serializability

Inhalt

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Concurrency Protocols

6 Deadlocks

7 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 20 / 57

Serializability

Concurrent Executions

Basic Assumption — Each transaction preserves database
consistency.

Thus, serial execution of a set of transactions preserves database
consistency.

A (possibly concurrent) schedule is serializable if it is equivalent to a
serial schedule. Different forms of schedule equivalence give rise to
the notions of:

conflict serializability
view serializability

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 21 / 57

Serializability

Simplified model of transactions

We ignore operations other than read and write instructions

We assume that transactions may perform arbitrary computations on
data in local buffers in between reads and writes.

Our simplified schedules consist of only read and write instructions.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 22 / 57

Serializability

Conflicting Instructions

Conflicts of read and write instructions:

Ti ↓ Tj → Ij = read Ij = write

Ii = read no conflict conflict

Ii = write conflict conflict

Intuitively, a conflict between two instructions Ii and Ij forces a
(logical) temporal order between them.

If Ii and Ij are consecutive in a schedule and they do not conflict,
their results would remain the same even if they had been
interchanged in the schedule.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 23 / 57

Serializability

Conflict Serializability/1

If a schedule S can be transformed into a schedule S ′ by a series of
swaps of non-conflicting instructions, then S and S ′ are conflict
equivalent.

A schedule S is conflict serializable if it is conflict equivalent to a
serial schedule.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 24 / 57

Serializability

Conflict Serializability/2

Schedule 3 and (serial) Schedule 6 are conflict equivalent, therefore
Schedule 3 is serializable.

T1 T2

read(A)
write(A)

read(A)
write(A)

read(B)
write(B)

read(B)
write(B)

Table: Schedule 3

T1 T2

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Table: Schedule 6

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 25 / 57

Serializability

Conflict Serializability/3

Example of a schedule that is not conflict serializable:

T3 T4

read(Q)
write(Q)

read(Q)

We are unable to swap instructions in the above schedule to obtain
either the serial schedule < T3,T4 >, or the serial schedule
< T4,T3 >.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 26 / 57

Serializability

Precedence Graph

Consider some schedule of a set of transactions T1,T2, . . . ,Tn

Precedence graph — a direct graph where the vertices are the
transactions (names).

We draw an arc from Ti to Tj if the two transaction conflict, and Ti

accessed the data item on which the conflict arose earlier.

We may label the arc by the item that was accessed.

Example

T1 T2
T3 T4

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 27 / 57

Serializability

Testing for Conflict Serializability

A schedule is conflict serializable if and only if
its precedence graph is acyclic.

Cycle-detection algorithms exist which take
order n2 time, where n is the number of
vertices in the graph.

(Better algorithms take order n + e where e
is the number of edges.)

If the precedence graph is acyclic, the
serializability order can be obtained by a
topological sorting of the graph.

That is, a linear order consistent with the
partial order of the graph.
For example, a serializability order for the
schedule (a) would be one of either (b) or (c)

Ti

Tj Tk

Tm

(a)

Ti

Tj

Tk

Tm

(b)

Ti

Tk

Tj

Tm

(c)

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 28 / 57

Recoverability

Inhalt

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Concurrency Protocols

6 Deadlocks

7 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 29 / 57

Recoverability

Recoverable Schedules

Recoverable schedule — if a transaction Tj reads a data item
previously written by a transaction Ti , then the commit operation of
Ti must appear before the commit operation of Tj .

The following schedule is not recoverable: T9 reads A written by T8

but commits before T8.
T8 T9

read(A)
write(A)

read(A)
C ← A
write(C)
commit

read(B)

If T8 aborts, T9 has read and copied an inconsistent database state.

Database must ensure that schedules are recoverable.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 30 / 57

Recoverability

Cascading Rollbacks

Cascading rollback: a single transaction failure leads to a series of
transaction rollbacks.

Consider the following schedule where none of the transactions has
yet committed (so the schedule is recoverable):

T10 T11 T12

read(A)
read(B)
write(A)

read(A)
write(A)

read(A)
abort

If T10 fails, T11 and T12 must also be rolled back.

Can lead to the undoing of a significant amount of work.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 31 / 57

Recoverability

Cascadeless Schedules

Cascadeless schedules — for each pair of transactions Ti and Tj such
that Tj reads a data item previously written by Ti , the commit
operation of Ti appears before the read operation of Tj .

Every cascadeless schedule is also recoverable.

Example of a schedule that is NOT cascadeless:
T10 T11 T12

read(A)
read(B)
write(A)

read(A)
write(A)

read(A)
abort

It is desirable to restrict the schedules to those that are cascadeless.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 32 / 57

Concurrency Protocols

Inhalt

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Concurrency Protocols

6 Deadlocks

7 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 33 / 57

Concurrency Protocols

Concurrency Protocols

A database must provide a mechanism that will ensure that all
possible schedules are both:

serializable
recoverable and preferably cascadeless

A concurrency protocol is a policy to guarantees serializable schedules.

Serial schedule: A policy in which only one transaction can execute at
a time provides a poor degree of concurrency.

Various protocols allow concurrent schedules that are serializable:

lock-based protocols
timestamp ordering protocols
validation-based protocols
multi-version concurrency control

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 34 / 57

Concurrency Protocols

Lock-Based Protocols/1

A lock is a mechanism to control concurrent access to a data item.

Data items can be locked in two modes:

1. exclusive (X) mode. Data item can be both read as well as written.
X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is requested
using lock-S instruction.

Lock requests are made to the concurrency-control manager by the
programmer. Transaction can proceed only after request is granted.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 35 / 57

Concurrency Protocols

Lock-Based Protocols/2

A lock on an item is granted to a transaction if the requested lock is
compatible with locks already held on the item by other transactions.

Lock-compatibility matrix:

S X

S true false

X false false

Any number of transactions can hold a shared lock on an item.
If any transaction holds an exclusive lock on the item, no other
transaction may hold any lock on the item.

If a lock cannot be granted, the requesting transaction is made to
wait till all incompatible locks held by other transactions have been
released. The lock is then granted.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 36 / 57

Concurrency Protocols

Lock-Based Protocols/3

Example of a transaction performing locking:

T2: lock-S(A)
read(A)
unlock(A)
lock-S(B)
read(B)
unlock(B)
display(A+ B)

Locking is not sufficient to guarantee serializability: if A gets updated
in-between the read of A and B, the displayed sum is wrong.

A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks. Locking protocols restrict the set of
possible schedules.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 37 / 57

Concurrency Protocols

The Two-Phase Locking Protocol/1

In the Two-Phase Locking (2PL) protocol, each transaction must go
through two phases that restrict the order in which locks can be
granted and released.

Phase 1: Growing Phase

transaction may obtain locks
transaction may not release locks

Phase 2: Shrinking Phase

transaction may release locks
transaction may not obtain locks

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 38 / 57

Concurrency Protocols

The Two-Phase Locking Protocol/2

The 2PL protocol guarantees conflict serializability.

The transactions can be serialized in the order of their lock points
(i.e., the point where a transaction acquired its final lock).

The set of 2PL schedules is a subset of conflict serializable schedules,
i.e., there can be conflict serializable schedules that cannot be
obtained with 2PL.

2PL is necessary: In the absence of extra information (e.g., ordering
of access to data) a locking protocol that does not follow 2PL cannot
guarantee conflict serializability.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 39 / 57

Concurrency Protocols

Timestamp Ordering Protocols

Each transaction gets a timestamp when it enters the system.

The protocol manages concurrent execution such that the
time-stamps determine the serializability order.

Each data item Q gets two timestamp values:

Write timestamp: timestamp of youngest transaction that wrote Q.
Read timestamp: timestamp of youngest transaction that read Q.

The timestamp ordering protocol ensures that any conflicting
operations are executed in timestamp order.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 40 / 57

Concurrency Protocols

Validation-Based Protocols

Optimistic approach: Execute transaction first and check for
serializability problems at the end.

Execution of transaction Ti is done in three phases:

1. Read and execution phase: Transaction Ti writes only to temporary
local variables.

2. Validation phase: Transaction Ti performs a validation test to
determine if local variables can be written without violating
serializability.

3. Write phase: If Ti is validated, the updates are applied to the
database; otherwise, Ti is rolled back.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 41 / 57

Concurrency Protocols

Multiversion Concurrency Control (MVCC)

MVCC schemes keep old versions of data item to increase
concurrency.

Each successful write results in the creation of a new version of the
written data item.

Readers are never blocked: an appropriate version of the data item is
returned based on the timestamp of the reading transaction.

Snapshot Isolation: MVCC scheme implemented e.g. in PostgreSQL.

each transaction gets a snapshot (conceptually a copy) of the database
at its start
transaction operates on its snapshot and does not see updates of other
transactions
conflicting updates are dealed with at time of update (first updater
wins) or commit (first committer wins)

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 42 / 57

Deadlocks

Inhalt

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Concurrency Protocols

6 Deadlocks

7 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 43 / 57

Deadlocks

Deadlocks/1

Consider the partial schedule
T3 T4

lock-x(B)
read(B)
B := B − 50
write(B)

lock-s(A)
read(A)
lock-s(B)

lock-x(A)

Neither T3 nor T4 can make progress — executing lock-S(B) causes
T4 to wait for T3 to release its lock on B, while executing lock-X(A)
causes T3 to wait for T4 to release its lock on A.

Such a situation is called a deadlock.

To handle the deadlock, one of T3 or T4 must be aborted and its
locks released.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 44 / 57

Deadlocks

Deadlocks/2

Two-phase locking does not ensure freedom from deadlocks.

In addition to deadlocks, there is a possibility of starvation.

Starvation occurs if the concurrency control manager is badly
designed. For example:

The same transaction is repeatedly rolled back due to deadlocks.
A transaction waits for an X-lock on an item, while a sequence of other
transactions request and are granted an S-lock on the same item.

Concurrency control manager can be designed to prevent starvation.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 45 / 57

Deadlocks

Deadlocks/3

The potential for deadlock exists in most locking protocols.
Deadlocks are a necessary evil.

When a deadlock occurs there is a possibility of cascading rollbacks.

Cascading roll-back is possible under two-phase locking. To avoid
this, follow a modified protocol called strict two-phase locking — a
transaction must hold all its exclusive locks till it commits/aborts.

Rigorous two-phase locking is even stricter. Here, all locks are held
till commit/abort. In this protocol, transactions can be serialized in
the order in which they commit.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 46 / 57

Deadlocks

Deadlock Handling

A system is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

How to deal with deadlocks?

1. Detection & Recovery: allow deadlocks to happen and recover from
the deadlock state.

2. Prevention: ensure that the system will never enter into a deadlock
state.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 47 / 57

Deadlocks

Deadlock Detection/1

Deadlocks can be described as a wait-for graph, which consists of a
pair G = (V ,E),

V is a set of vertices (all the transactions in the system)
E is a set of edges; each element is an ordered pair Ti → Tj .

If Ti → Tj is in E , then there is a directed edge from Ti to Tj ,
implying that Ti is waiting for Tj to release a data item.

When Ti requests a data item currently being held by Tj , then the
edge Ti → Tj is inserted in the wait-for graph. This edge is removed
only when Tj is no longer holding a data item needed by Ti .

The system is in a deadlock state if and only if the wait-for graph has
a cycle. Must invoke a deadlock-detection algorithm periodically to
look for cycles.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 48 / 57

Deadlocks

Deadlock Detection/2

T18

T17

T19

T20

Wait-for graph without a cycle

T18

T17

T19

T20

Wait-for graph with a cycle

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 49 / 57

Deadlocks

Deadlock Recovery

To recover from a deadlock state, some transaction must be aborted.

How to pick a victim (transaction to be aborted)?

Select a transaction as victim that will incur minimum cost.
Starvation happens if same transaction is always chosen as victim.
Include the number of rollbacks into the cost factor to avoid starvation.

How far to roll back victim transaction?

total rollback: abort the transaction and then restart it
more efficient to roll back transaction only as far as necessary to break
deadlock

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 50 / 57

Deadlocks

Deadlock Prevention Strategies/1

1. Predeclaration: Require that each transaction locks all its data items
before it begins execution.

Problem: need to know data items to be locked upfront.

2. Lock Order: Impose order on all data items. Transaction can lock
only in the specified order.

Easy to implement on top of existing 2PL implementation.
Problem: need to know data items to be locked upfront.

3. Timeout-Based schemes:

A transaction waits for a lock only for a specified amount of time.
Roll back and restart transaction if lock cannot be granted within
timeout interval.
Problem: difficult to determine good value of the timeout interval.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 51 / 57

Deadlocks

Deadlock Prevention Strategies/2

4. Preemptive and non-preemptive scheme based on timestamps:

Transactions have a timestamps: Older transactions (smaller
timestamp) have precedence over younger transactions.

Preemptive: Younger transaction is aborted if it holds a lock required
by an older one (called wound-wait scheme).

Non-preemptive: Younger transaction is aborted if it request a lock
held by and older one (called wait-die scheme)

A rolled back transactions is restarted with its original timestamp.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 52 / 57

Implementation of Isolation / SQL

Inhalt

1 Transaction Concept

2 Concurrent Executions

3 Serializability

4 Recoverability

5 Concurrency Protocols

6 Deadlocks

7 Implementation of Isolation / SQL

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 53 / 57

Implementation of Isolation / SQL

Weak Levels of Consistency

Concurrency control protocols make a trade-off between the amount
of concurrency they allow and the amount of overhead they impose.

Trade off accuracy for performance: Some applications are willing to
live with weak levels of consistency, allowing schedules that are not
serializable.

SQL defines three undesired phantomena of concurrent transactions
and isolation levels to avoid them.

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 54 / 57

Implementation of Isolation / SQL

Undesirable Phenomena of Concurrent Transactions

Dirty read

transaction reads data written by concurrent uncommitted transaction
problem: read may return a value that was never in the database
because the writing transaction aborted

Non-repeatable read

different reads on the same item within a single transaction give
different results (caused by other transactions)
e.g., concurrent transactions T1: x = R(A), y = R(A), z = y − x and
T2: W (A = 2 ∗ A), then z can be either zero or the initial value of A
(should be zero!)

Phantom read

repeating the same query later in the transaction gives a different set
of result tuples
other transactions can insert new tuples during a scan
e.g., “Q: get accounts with balance > 1000” gives two tuples the first
time, then a new account with balance > 1000 is inserted by an other
transaction; the second time Q gives three tuples

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 55 / 57

Implementation of Isolation / SQL

Isolation Guarantees (SQL Standard)

Read uncommitted: dirty, non-repeatable, phantom

reads may access uncommitted data
writes do not overwrite uncommitted data

Read committed: non-repeatable, phantom

reads can access only committed data
cursor stability: in addition, read is repeatable within single SELECT

Repeatable read: phantom

phantom reads possible

Serializable:

none of the undesired phenomenas can happen

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 56 / 57

Implementation of Isolation / SQL

Transaction Definition in SQL

Data manipulation language must include a construct for specifying
the set of actions that comprise a transaction.

In SQL, a transaction begins implicitly.

BEGIN [TRANSACTION ISOLATION LEVEL ...]
Isolation levels: read committed, read uncommitted, repeatable read,
serializable

A transaction in SQL ends by:

COMMIT commits current transaction and begins a new one.
ROLLBACK causes current transaction to abort.

Typicallly, an SQL statement commits implicitly if it executes
successfully

Implicit commit can be turned off by a database directive,
e.g. in JDBC, connection.setAutoCommit(false);

Augsten (Univ. Salzburg) DB2 – Transactions WS 2023/24 57 / 57

