Department of Computer Science

Prof. Dr. Nikolaus Augsten Jakob-Haringer-Str. 2 5020 Salzburg, Austria Telefon: +43 662 8044 6347 E-Mail: nikolaus.augsten@plus.ac.at

Similarity Search in Large Databases Wintersemester 2023/2024

Exam 28.02.2024

Name:	Student ID:	

Hints

- Check whether you received all pages of the exam (9 pages).
- Write your name or your student ID on each sheet of the exam and hand in all pages.
- All answers are expected to be written on the exam sheets.
- Clearly highlight and enumerate additional pages that are used for longer answers. Match your text with the according exercise.
- Only use pencils that are permanent and non-red colored.
- Use the notation and techniques discussed in the lecture.
- Exercises with more than one solution are not graded.
- You are allowed to use one A4 sheet with your personal notes (both sides, hand written or printed).
- Exam duration: 90 minutes

Signature

Grading

Filled by the examiner

Exercise	1	2	3	4	5	6	7	8	Summe
Total points	2	2	2	2	2	2	2	2	16
Points reached									

Consider the dirty entity resolution problem in Figure 1. Use the blocking technique on attribute ZIP to produce *candidate pairs*, i.e., the record pairs that must be compared. Illustrate the resulting blocks and list the candidates by their ID pairs.

ID	Name	ZIP	YoB
b_1	Gruber	5034	1998
b_2	Smyth	5020	1993
b_3	Huber	5034	1949
b_4	Gruber	5020	2011
b_5	Chirsten	5020	1998
b_6	Huber	5034	1993

Figure 1: Dirty entity resolution problem.

2 Points

Consider the given brute force string edit distance algorithm (cf. Algorithm 1) and perform the following tasks:

- a) Draw the recursion tree for input strings *no* and *go*.
- b) State the runtime complexity of Algorithm 1.

```
function ed-bf(x, y)

m \leftarrow |x|

n \leftarrow |y|

if m = 0 then return n

if n = 0 then return m

if x[m] = y[n] then c = 0

else c = 1

return min(ed-bf(x, y[1 \dots n - 1]) + 1, ed-bf(x[1 \dots m - 1], y) + 1, ed-bf(x[1 \dots m - 1], y[1 \dots n - 1]) + c)
```

Algorithm 1: Brute force string edit distance algorithm.

Given the strings x = clapton and y = chapman. Compute the q-gram distance and the normalized q-gram distance between x and y (q = 3).

2 Points

Compute the traversal string lower bound for the tree edit distance between trees T_1 and T_2 in Figure 2.

Figure 2: Two ordered trees T_1 and T_2 .

Consider ordered trees T_1 and T_2 in Figure 3, forest distance matrix fd, and tree distance matrix td for the trees T_1 and T_2 .

Compute the values for the four shaded cells in the forest distance matrix fd.

Figure 3: Two ordered trees T_1 and T_2 .

fd:

	d_j -	+ 1	2	3	4	5	6
$d_i \downarrow$	0	1	2	3	4	5	6
1	1	0	1	2	3	4	5
2	2	1	0	1	2	3	4
3	3	2	1				
4	4	3	2				
5							
6							

td:						
	1	2	3	4	5	6
1		1			1	
2	1	0	2	3	1	5
3	2	1	2	2	2	4
4		3			4	
5	1	1	3	4	0	5
6		5			5	

Prove that the binary branch distance is a lower bound for the tree edit distance:

Let T_1 and T_2 be two trees. If the tree edit distance between T_1 and T_2 is $\delta_t(T_1, T_2)$, then the binary branch distance between them satisfies

 $\delta_{bb}(T_1, T_2) \le 5 \times \delta_{ted}(T_1, T_2).$

Consider ordered trees T_1 and T_2 in Figure 4. Compute the constraint tree edit distance and illustrate the according edit mapping between T_1 and T_2 .

Figure 4: Two ordered trees T_1 and T_2 .

2 Points

Exercise 8 - Dice Prefix Signature.

Consider the collection $R = \{s_1, s_2, s_3, s_4\}$ of sets in Figure 5. Compute *prefix signatures* for all sets $s_i \in R$ for *Dice similarity* threshold t = 0.8.

Note: For the Dice similarity, Dice(r, s), between two sets, r and s, the following holds:

$$Dice(r,s) \ge t \Rightarrow |r \cap s| \ge \frac{t \cdot |r|}{2-t}$$

$$s_{1} = \{X, C, M, Z, F, N\}$$

$$s_{2} = \{Z, N, F, M, X\}$$

$$s_{3} = \{M, Z, F, G\}$$

$$s_{4} = \{C, M, G\}$$

Figure 5: Set collection $R = \{s_1, s_2, s_3, s_4\}.$