Parallel and Distributed Data Management Parallel Databases

Nikolaus Augsten

nikolaus.augsten@plus.ac.at Department of Computer Science University of Salzburg

Sommersemester 2025

Version 9. April 2025

PDDM – Parallel Databases

Introduction

- Parallel machines are becoming quite common and affordable
 - prices of microprocessors, memory, and disks have dropped sharply
 - recent desktop computers feature multiple processors and this trend is projected to accelerate
- Databases are growing
 - large volumes of transaction data are collected and stored for later analysis
 - large objects like multimedia data are increasingly stored in databases
- Large-scale parallel database systems increasingly used for:
 - storing large volumes of data
 - processing time-consuming decision-support queries
 - providing high throughput for transaction processing

Parallelism in Databases

Databases naturally lend themselves to parallelism:

- Parallel I/O: data can be partitioned across multiple disks.
- Parallel execution: execute individual relational operations in parallel
 - e.g., sort, join, aggregation can be executed in parallel
 - each processor can work independently on its own data partition
- Queries are expressed at the logical level and in a high level language:
 - SQL is declarative and is translated to relational algebra
 - separation of logical and physical level makes parallelization easier
- Different queries can run in parallel:
 - concurrency control takes care of conflicts

Outline

1/O Parallelism

2 Interquery Parallelism

3 Intraquery Parallelism

- Interoperation Parallelism
- Intraoperation Parallelism

Query Optimization and System Design

Outline

1/0 Parallelism

2 Interquery Parallelism

3 Intraquery Parallelism

- Interoperation Parallelism
- Intraoperation Parallelism

4 Query Optimization and System Design

I/O Parallelism

• Reduce the time required to retrieve relations from disk by partitioning the relations on multiple disks.

• Horizontal partitioning — tuples of a relation are divided among many disks such that each tuple resides on one disk.

Horizontal Partitioning

Let *n* be the number of disks.

- Round-robin:
 - send the *i*-th tuple inserted in the relation to disk *i mod n*.
- Hash partitioning:
 - choose one or more attributes A as the partitioning attributes
 - choose hash function h with range $0 \dots n-1$
 - send tuple t with hash value i = h(t[A]) to disk i
- Range partitioning:
 - choose one or more attributes A as the partitioning attributes
 - choose a partitioning vector $[v_0, v_1, \ldots, v_{n-2}]$
 - tuples t with $t[A] < v_0$ got to disk 0
 - tuples with $v_i \leq t[A] < v_{i+1}$ to to disk i+1
 - tuples with $v_{n-2} \leq t[A]$ go to disk n-1
 - Example: with partitioning vector [5, 11] on attribute A, a tuple t with partitioning attribute value of t[A] = 2 will go to disk 0, a tuple with t[A] = 8 will go to disk 1, while a tuple with t[A] = 20 will go to disk 2.

- We distinguish three different types of data access:
 - 1. sequential scan: scan the entire relation
 - 2. point query: locate a specific tuple
 - predicate is equality, zero or one result tuple
 - e.g., tuple of relation r with r.A = 25 (A is a key)
 - multi point query: zero or more result tuples (A is not a key)
 - 3. range query: locate all tuples within a specified value range
 - e.g., all tuples of relation r with $10 \le r.A < 25$.

Comparison of Partitioning Techniques/2

Round robin:

- Good for sequential scan:
 - all disks have almost an equal number of tuples
 - retrieval work is thus well balanced between disks

• Point queries and range queries are difficult to process

• no clustering — relevant tuples are scattered across all disks

Comparison of Partitioning Techniques/3

Hash partitioning:

- Good for sequential access
 - assuming hash function is good, and partitioning attributes form a key, tuples will be equally distributed between disks
 - retrieval work is then well balanced between disks
- Good for point queries on partitioning attribute
 - lookup single disk, leaving others available for answering other queries
- No clustering, so difficult to answer range queries

Comparison of Partitioning Techniques/4

Range partitioning:

- Provides data clustering by partitioning attribute value.
- Good for sequential access.
- Good for point queries:
 - lookup single disk, leaving others available for answering other queries
- Good for range queries on partitioning attribute:
 - lookup single or few disks
 - good if result tuples are from one to a few blocks of a disk
- Execution skew: affects range queries and multi point queries
 - if many blocks are to be fetched, they may still be fetched from one to a few disks: potential parallelism in disk access is wasted
 - e.g., partition by order date, then tuples with recent order dates will be accessed more frequently

Partitioning a Relation across Disks

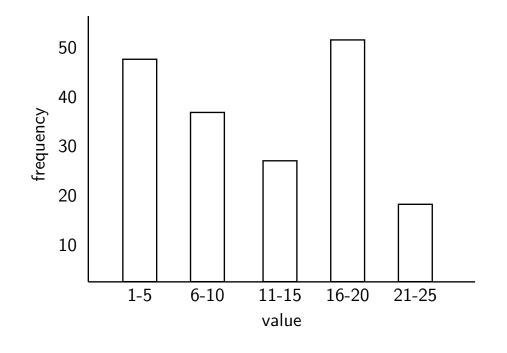
- If a relation contains only a few tuples which will fit into a single disk block, then assign the relation to a single disk.
- Large relations are preferably partitioned across all the available disks.
- If a relation consists of m disk blocks and there are n disks available, then the relation should be allocated to min(m, n) disks.

Handling of Data Skew

- Distribution of tuples to disks may be skewed: some disks have many tuples, while others have fewer tuples.
- Skew limits speedup. Example:
 - relation with 1000 tuples is partitioned to 100 disks (10 tuples/disk)
 - expected speedup for scan: $\times 100$
 - skew: one disk has 40 tuples \Rightarrow max. speedup is $\times 25$
- Types of data skew:
 - Attribute-value skew:
 - Some values appear in the partitioning attributes of many tuples; all the tuples with the same value for the partitioning attribute end up in the same partition.
 - Can occur with range-partitioning and hash-partitioning.
 - Partition skew:
 - With range-partitioning, badly chosen partition vector may assign too many tuples to some partitions and too few to others.
 - Less likely with hash-partitioning if a good hash-function is chosen.

Handling Skew using Histograms

- Balanced partitioning vector can be constructed from histogram in a relatively straightforward fashion
 - assume uniform distribution within each range of the histogram
- Histogram can be constructed by scanning relation, or sampling (blocks containing) tuples of the relation



Handling Skew Using Virtual Processor Partitioning

- Skew in range partitioning can be handled elegantly using virtual processor partitioning:
 - create a large number of partitions (say $10 \times$ the number of processors)
 - assign virtual processors to partitions either in round-robin fashion or based on estimated cost of processing each virtual partition
- Basic idea:
 - If any normal partition would have been skewed, it is very likely the skew is spread over a number of virtual partitions.
 - Skewed virtual partitions get spread across a number of processors, so work gets distributed evenly.

Outline

1 I/O Parallelism

2 Interquery Parallelism

3 Intraquery Parallelism

- Interoperation Parallelism
- Intraoperation Parallelism

Query Optimization and System Design

Interquery Parallelism

- Queries/transactions execute in parallel with one another.
- Increases transaction throughput; used primarily to scale up a transaction processing system to support a larger number of transactions per second.
- Easiest form of parallelism to support, particularly in a shared-memory parallel database, because even sequential database systems support concurrent processing.
- More complicated on shared-disk or shared-nothing architectures:
 - locking and logging: coordinate by passing messages between processors.
 - data in a local buffer may have been updated at another processor.
 - cache-coherency has to be maintained: reads and writes of data in buffer must find latest version of data.

Cache Coherency Protocol

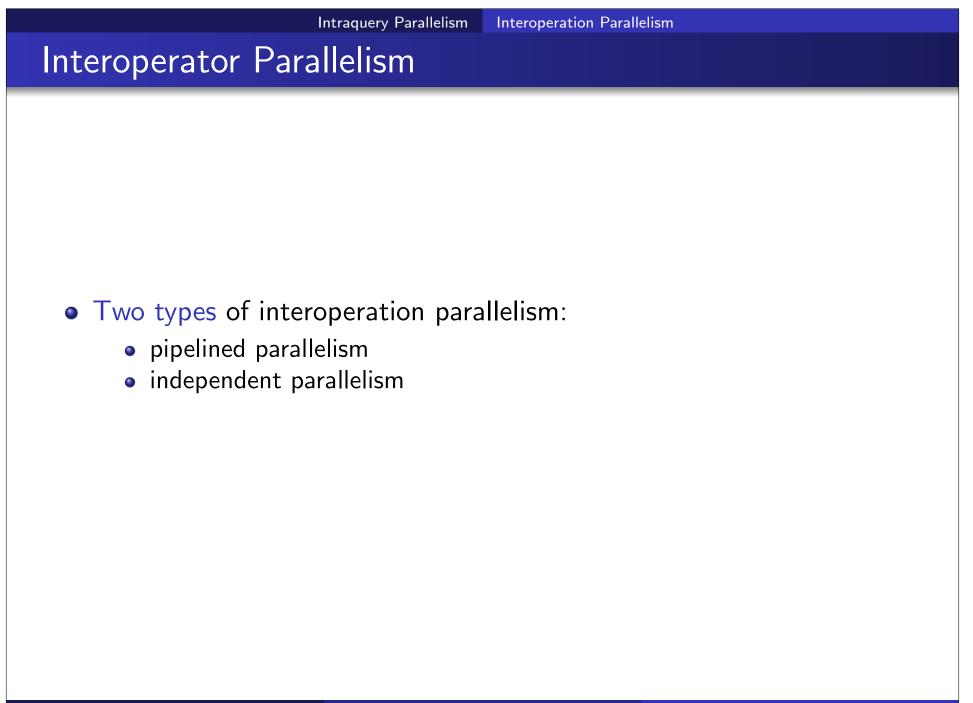
• Example of a cache coherency protocol for shared-disk systems:

- before reading/writing to a page, the page must be locked in shared/exclusive mode
- on locking a page, the page must be read from disk
- before unlocking a page, the page must be written to disk if it was modified.
- More complex protocols with fewer disk reads/writes exist.
- Cache coherency protocols for shared-nothing systems are similar.
 Each database page is assigned a home processor. Requests to fetch the page or write it to disk are sent to the home processor.

Intraquery Parallelism Outline 1 I/O Parallelism Interquery Parallelism Intraquery Parallelism Interoperation Parallelism Intraoperation Parallelism Query Optimization and System Design

Intraquery Parallelism

- Execution of a single query in parallel on multiple processors/disks; important for speeding up long-running queries.
- Two complementary forms of intraquery parallelism:
 - Intraoperation Parallelism parallelize the execution of each individual operation in the query.
 - Interoperation Parallelism execute the different operations in a query expression in parallel.
- Intraoperation parallelism scales better with increasing parallelism because the number of tuples processed by each operation is typically more than the number of operations in a query.



Pipelined Parallelism

- Example: Consider a join of four relations
 - $r_1 \bowtie r_2 \bowtie r_3 \bowtie r_4$
- Set up a pipeline that computes the three joins in parallel
 - Let P_1 be assigned the computation of $temp_1 = r_1 \bowtie r_2$
 - And P_2 be assigned the computation of $temp_2 = temp_1 \bowtie r_3$
 - And P_3 be assigned the computation of $temp_2 \bowtie r_4$
- Each operation can execute in parallel sending result tuples to the next operation even while it is computing further results
- Requires pipelineable (non-blocking) join evaluation algorithm (e.g., indexed nested loops join)

Factors Limiting Utility of Pipeline Parallelism

- Pipeline parallelism is useful since it avoids writing intermediate results to disk
- Useful with small number of processors, but does not scale up well with more processors. One reason is that pipeline chains do not attain sufficient length.
- Cannot pipeline operators which do not produce output until all inputs have been accessed (e.g., aggregate and sort)
- Little speedup is obtained for the frequent cases of execution skew in which one operator's execution cost is much higher than the others.
- Advantage: avoids writing intermediate results to disk

Independent Parallelism

• Example: Consider a join of four relations

 $r_1 \bowtie r_2 \bowtie r_3 \bowtie r_4$

• Independent parallelism:

- Let P_1 be assigned the computation of $temp_1 = r_1 \bowtie r_2$
- And P_2 be assigned the computation of $temp_2 = r_3 \bowtie r_4$
- And P_3 be assigned the computation of $temp_1 \bowtie temp_2$
- P_1 and P_2 can work independently in parallel
- P_3 has to wait for input from P_1 and P_2
 - Can pipeline output of P_1 and P_2 to P_3 , combining independent parallelism and pipelined parallelism
- Does not provide a high degree of parallelism
 - useful with a lower degree of parallelism.
 - less useful in a highly parallel system.

Parallel Processing of Relational Operations

• Our discussion of parallel algorithms assumes:

- read-only queries
- shared-nothing architecture
- *n* processors, P₀, ..., P_{n-1}, and *n* disks D₀, ..., D_{n-1}, where disk D_i is associated with processor P_i.
- If processor has multiple disks: simulate a single disk D_i .
- Shared-nothing architectures can be efficiently simulated on shared-memory and shared-disk systems.
 - Algorithms for shared-nothing systems can thus be run on shared-memory and shared-disk systems.
 - However, some optimizations may be possible.

Parallel Sort/1

Range-Partitioning Sort

- Choose processors P_0, \ldots, P_{m-1} , where $m \leq n$ to do sorting.
- Create range-partition vector with *m* ranges, on the sorting attributes
- Redistribute the relation using range partitioning
 - all tuples that lie in the i^{th} range are sent to processor P_i
 - P_i stores the tuples it received temporarily on disk D_i
 - $\bullet\,$ this step requires I/O and communication overhead
- Each processor P_i sorts its partition of the relation locally.
- Each processors executes same operation (sort) in parallel with other processors, without any interaction with the others (data parallelism).
- Final merge operation is trivial: range-partitioning ensures that, for 0 ≤ i < j < m, the key values in processor P_i are all less than the key values in P_j.

Parallel Sort/2

Parallel External Sort-Merge

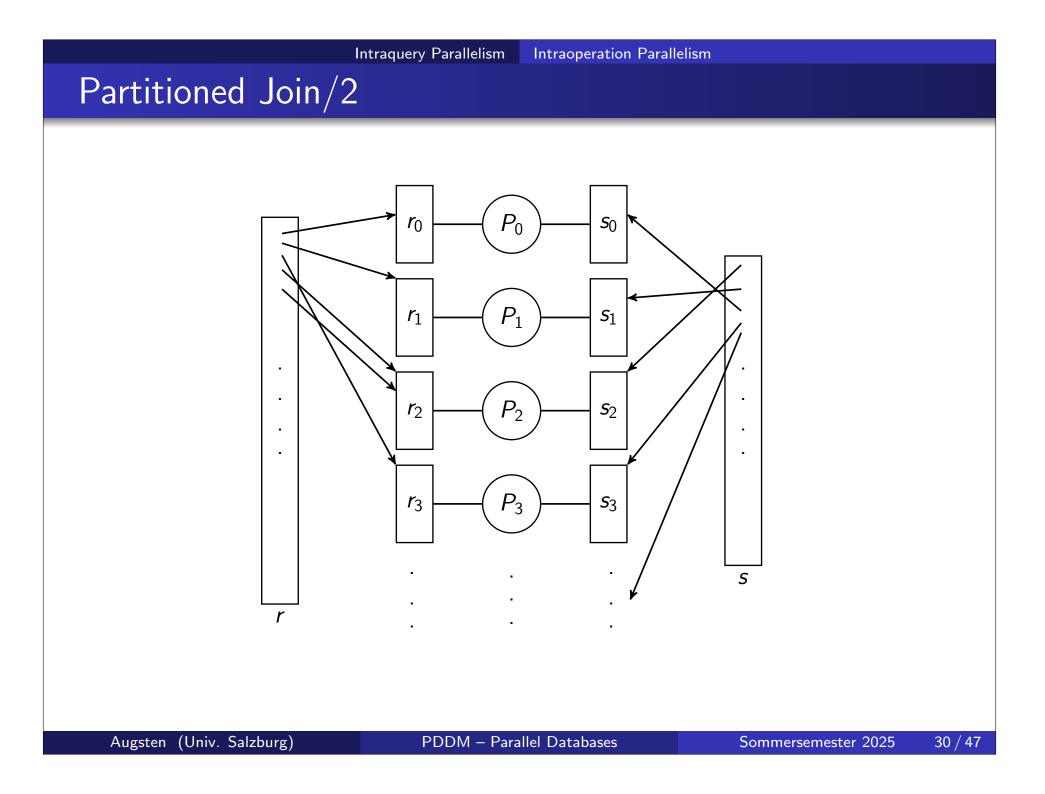
- Assume the relation has already been partitioned among disks D_0, \ldots, D_{n-1} (in whatever manner).
- Each processor P_i locally sorts the data on disk D_i .
- Sorted runs of processors are merged to get the final sorted output.
- Parallelize the merging of sorted runs as follows:
 - The sorted partitions at each processor P_i are range-partitioned across the processors P_0, \ldots, P_{m-1} .
 - Each processor *P_i* performs a merge on the streams as they are received, to get a single sorted run.
 - The sorted runs on processors P_0, \ldots, P_{m-1} are concatenated to get the final result.

Parallel Join

- The join operation requires pairs of tuples to be tested to see if they satisfy the join condition, and if they do, the pair is added to the join output.
- Parallel join algorithms attempt to split the pairs to be tested over several processors. Each processor then computes part of the join locally.
- In a final step, the results from each processor can be collected together to produce the final result.

Partitioned Join/1

- For equi-joins and natural joins, it is possible to partition the two input relations across the processors, and compute the join locally at each processor.
- Let r and s be the input relations, and we want to compute $r \bowtie_{r.A=s.B} s$.
- r and s each are partitioned into n partitions, denoted $r_0, r_1, \ldots, r_{n-1}$ and $s_0, s_1, \ldots, s_{n-1}$.
- Can use either range partitioning or hash partitioning.
- *r* and *s* must be partitioned on their join attributes (*r*.*A* and *s*.*B*), using the same range-partitioning vector or hash function.
- Partitions r_i and s_i are sent to processor P_i ,
- Each processor P_i locally computes $r_i \bowtie_{r_i.A=s_i.B} s_i$. Any of the standard join methods can be used.



Partitioned Parallel Hash-Join/1

Parallelizing partitioned hash join:

- Assume *s* is smaller than *r*, then *s* is chosen as the build relation.
- A hash function h_1 takes the join attribute value x of each tuple in s and maps this tuple to one of the *n* processors.
- All tuples are sent to the appropriate processors: a tuple with hash value $h_1(x) = i$ is sent to processor P_i .
- Let s_i denote the tuples of relation s that are sent to processor P_i .
- As tuples of relation s are received at the destination processors P_i, they are partitioned further using another hash function, h₂, which is used to compute the hash-join locally.

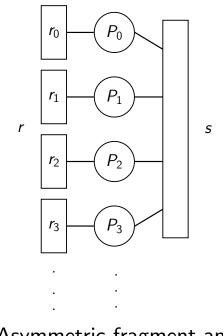
Partitioned Parallel Hash-Join/2

- Once the tuples of *s* have been distributed, probe relation *r* is redistributed across the *n* processors using hash function *h*₁.
- Let r_i denote the tuples of relation r that are sent to processor P_i .
- As tuples of relation r are received at the destination processors P_i , they are partitioned on P_i using hash function h_2 .
- Each processor P_i executes the build and probe phases of the hash-join algorithm on the local partitions r_i and s_i to produce a partition of the final result of the hash-join.
- Note: Hash-join optimizations can be applied to the parallel case, e.g., the hybrid hash-join algorithm can be used to cache some of the incoming tuples in memory and avoid the cost of writing them to disk and reading them back in.

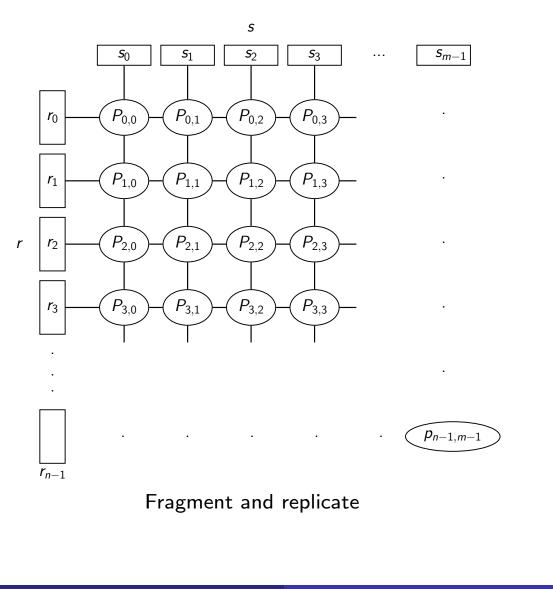
- Partitioning not possible for some join conditions
 - E.g., non-equijoin conditions, such as r.A > s.B.
- For joins were partitioning is not applicable, parallelization can be accomplished by fragment and replicate technique
- Special case asymmetric fragment-and-replicate:
 - One of the relations, say *r*, is partitioned; any partitioning technique can be used.
 - The other relation, s, is replicated across all the processors.
 - Processor *P_i* then locally computes the join of *r_i* with all of s using any join technique.

Parallel Nested-Loop Join

- Assume that
 - relation s is much smaller than relation r
 - *r* is stored by partitioning (partitioning technique irrelevant)
 - there is an index on a join attribute of relation *r* at each of the partitions of relation *r*.
- Use asymmetric fragment-and-replicate, with relation *s* being replicated, and using the existing partitioning of relation *r*.
- Each processor P_j where a partition of relation *s* is stored reads the tuples of relation *s* stored in D_j , and replicates the tuples to every other processor P_i .
 - At the end of this phase, relation *s* is replicated at all sites that store tuples of relation *r*.
- Each processor P_i performs an indexed nested-loop join of relation *s* with the *i*th partition of relation *r*.



Asymmetric fragment and replicate



• General case: reduces the sizes of the relations at each processor.

- r is partitioned into n partitions r₀, r₁, ..., r_{n-1}; s is partitioned into m partitions, s₀, s₁, ..., s_{m-1}.
- Any partitioning technique may be used.
- There must be at least m * n processors.
- Label the processors as
- $P_{0,0}, P_{0,1}, \ldots, P_{0,m-1}, P_{1,0}, \ldots, P_{n-1,m-1}$.
- $P_{i,j}$ computes the join of r_i with s_j . In order to do so, r_i is replicated to $P_{i,0}, P_{i,1}, \ldots, P_{i,m-1}$, while s_i is replicated to $P_{0,i}, P_{1,i}, \ldots, P_{n-1,i}$

• Any join technique can be used at each processor $P_{i,j}$.

- Both versions of fragment-and-replicate work with any join condition since every tuple in *r* can be tested with every tuple in *s*.
- Usually has a higher cost than partitioning since one of the relations (for asymmetric fragment-and-replicate) or both relations (for general fragment-and-replicate) is replicated multiple times.
- Sometimes asymmetric fragment-and-replicate is preferable even though partitioning could be used.

Other Relational Operations/1

Selection $\sigma_{\theta}(r)$

- If θ is of the form $a_i = v$, where a_i is an attribute and v a value.
 - If r is partitioned on a_i the selection is performed at a single processor.
- If θ is of the form $l \leq a_i \leq u$ (i.e., θ is a range selection) and the relation has been range-partitioned on a_i
 - Selection is performed at each processor whose partition overlaps with the specified range of values.
- In all other cases: the selection is performed in parallel at all the processors.

Other Relational Operations/2

• Duplicate elimination

- Perform by using either of the parallel sort techniques
 - eliminate duplicates as soon as they are found during sorting.
- Can also partition the tuples (using either range- or hash-partitioning) and perform duplicate elimination locally at each processor.

• Projection

- Projection without duplicate elimination can be performed as tuples are read in from disk in parallel.
- If duplicate elimination is required, any of the above duplicate elimination techniques can be used.

Grouping/Aggregation

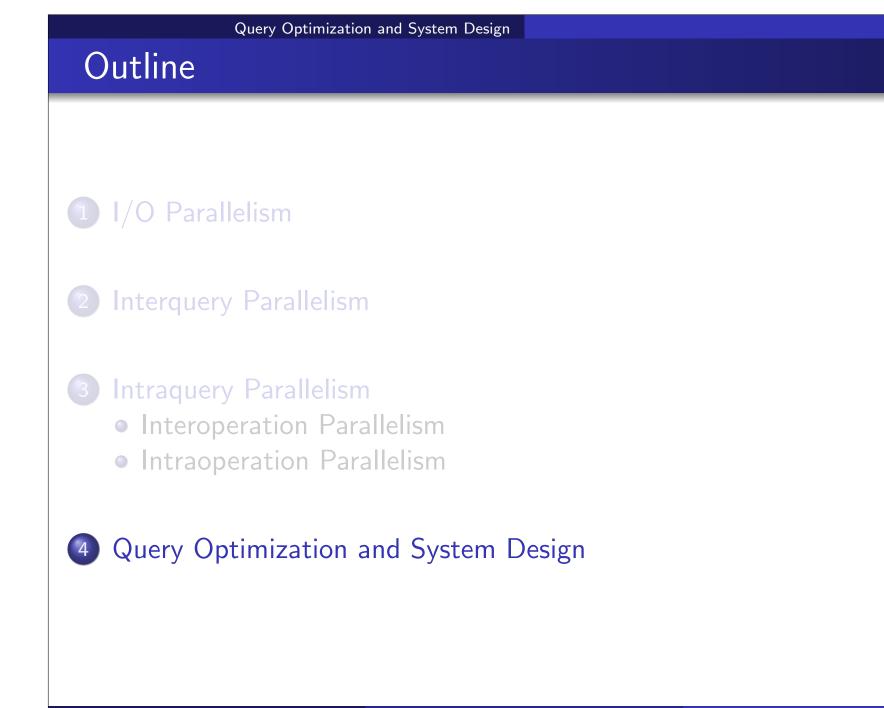
- Partition the relation on the grouping attributes and then compute the aggregate values locally at each processor.
- Can reduce cost of transferring tuples during partitioning by partly computing aggregate values before partitioning.
- Consider the sum aggregation operation:
 - Perform aggregation operation at each processor P_i on those tuples stored on disk D_i
 - results in tuples with partial sums at each processor.
 - Result of the local aggregation is partitioned on the grouping attributes, and the aggregation performed again at each processor P_i to get the final result.
- Fewer tuples need to be sent to other processors during partitioning.

Cost of Parallel Evaluation of Operations

- If there is no skew in the partitioning, and there is no overhead due to the parallel evaluation, expected speedup will be *n*
- If skew and overheads are also to be taken into account, the time taken by a parallel operation can be estimated as

 $T_{part} + T_{asm} + max(T_0, T_1, ..., T_{n-1})$

- T_{part} is the time for partitioning the relations
- T_{asm} is the time for assembling the results
- T_i is the time taken for the operation at processor P_i
 - this needs to be estimated taking into account the skew, and the time wasted in contentions.



Query Optimization/1

- Query optimization in parallel databases is significantly more complex than query optimization in sequential databases.
- Cost models are more complicated, since we must take into account partitioning costs and issues such as skew and resource contention.
- When scheduling execution tree in parallel system, must decide:
 - How to parallelize each operation and how many processors to use for it.
 - What operations to pipeline, what operations to execute independently in parallel, and what operations to execute sequentially, one after the other.
- Determining the amount of resources to allocate for each operation is a problem.
 - E.g., allocating more processors than optimal can result in high communication overhead.
- Long pipelines should be avoided as the final operation may wait a lot for inputs, while holding precious resources

Query Optimization/2

- Use heuristics: Number of parallel evaluation plans much larger than number of sequential evaluation plans.
- Heuristic 1: No pipelining, only intra-operation parallelism:
 - Parallelize every operation on all processors
 - Use standard optimization technique, but with new cost model
- Heuristic 2: First choose most efficient sequential plan and then choose how best to parallelize the operations in that plan.
 - Volcano parallel database popularized the exchange-operator model
 - exchange operator is introduced into query plans to partition and distribute tuples
 - each operation works independently on local data on each processor, in parallel with other copies of the operation
- Choosing a good physical storage organization (partitioning technique) is important to speed up queries.

Design of Parallel Systems/1

Some issues in the design of parallel systems:

- Parallel loading of data from external sources is needed in order to handle large volumes of incoming data.
- Resilience to failure of some processors or disks.
 - Probability of some disk or processor failing is higher in a parallel system.
 - Operation (perhaps with degraded performance) should be possible in spite of failure.
 - Redundancy achieved by storing extra copy of every data item at another processor.

Design of Parallel Systems/2

- On-line reorganization of data and schema changes must be supported.
 - For example, index construction on terabyte databases can take hours or days even on a parallel system.
 - Need to allow other processing (insertions/deletions/updates) to be performed on relation even as index is being constructed.
 - Basic idea: index construction tracks changes and "catches up" on changes at the end.
- Also need support for on-line repartitioning and schema changes (executed concurrently with other processing).

Examples of Parallel Database Systems

- Teradata (1979), appliance, still large market share
- IBM Netezza (1999), appliance
- Microsoft DATAllegro / Parallel Data Warehouse (2003), appliance
- Greenplum (2005), Pivotal, open source
- Vertica Analytic Database (2005) commodity hardware
- Oracle Exadata (2008), appliance
- AsterixDB (2009), Java, open source, commodity hardware
- SAP Hana (2010), main memory, appliance