
Parallel and Distributed Data Management
Distributed Databases

Nikolaus Augsten
nikolaus.augsten@plus.ac.at

Department of Computer Science
University of Salzburg

https://dbresearch.uni-salzburg.at

Sommersemester 2025
Version April 9, 2025

Adapted from slides for textbook “Database System Concepts”
by Silberschatz, Korth, Sudarshan

http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 1 / 92



Introduction

Introduction

A distributed database system consists of loosely coupled sites that
share no physical component (like disk or RAM).

Database systems that run on each site are independent of each other.

Transactions may access data at one or more sites.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 2 / 92



Introduction

Homogeneous vs. Heterogeneous Distributed Databases

In a homogeneous distributed database

All sites have identical software
Are aware of each other and agree to cooperate in processing user
requests.
Each site surrenders part of its autonomy in terms of right to change
schemas or software
Appears to user as a single system

In a heterogeneous distributed database
Different sites may use different schemas and software

Difference in schema is a major problem for query processing
Difference in software is a major problem for transaction processing

Sites may not be aware of each other and may provide only limited
facilities for cooperation in transaction processing

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 3 / 92



Introduction

Outline

1 Distributed Data Storage

2 Distributed Transactions

3 Commit Protocols
Two Phase Commit (2PC)
Three Phase Commit (3PC)
Persistent Messaging

4 Concurrency Control
Locking
Deadlocks
Timestamping
Weak Consistency

5 Availability

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 4 / 92



Distributed Data Storage

Outline

1 Distributed Data Storage

2 Distributed Transactions

3 Commit Protocols
Two Phase Commit (2PC)
Three Phase Commit (3PC)
Persistent Messaging

4 Concurrency Control
Locking
Deadlocks
Timestamping
Weak Consistency

5 Availability

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 5 / 92



Distributed Data Storage

Distributed Data Storage

Assume relational data model

Replication

system maintains multiple copies of data, stored in different sites

Fragmentation

relation is partitioned into several fragments stored in distinct sites

Replication and fragmentation can be combined

relation is partitioned into several fragments
system maintains several identical replicas of each such fragment.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 6 / 92



Distributed Data Storage

Data Replication/1

A relation or fragment of a relation is replicated if it is stored
redundantly in two or more sites.

Full replication: relation is stored at all sites

Fully redundant databases: every site contains copy of entire database

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 7 / 92



Distributed Data Storage

Data Replication/2

Advantages of Replication

Availability: failure of site containing relation r does not result in
unavailability of r as replicas exist.
Parallelism: queries on r may be processed by several nodes in parallel.
Reduced data transfer: relation r is available locally at each site
containing a replica of r .

Disadvantages of Replication

Increased cost of updates: each replica of relation r must be updated.
Increased complexity of concurrency control: concurrent updates to
distinct replicas may lead to inconsistent data unless special
concurrency control mechanisms are implemented.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 8 / 92



Distributed Data Storage

Data Fragmentation

Division of relation r into fragments r1, r2, . . . , rn which contain
sufficient information to reconstruct relation r .

Horizontal fragmentation: each tuple of r is assigned to one or more
fragments:

r =
n⋃

i=1

ri

Vertical fragmentation: schema of relation r is split into several
smaller schemas.

All schemas must contain a common candidate key to ensure lossless
join property.
A special attribute, the tuple-id attribute may be added to each
schema to serve as a candidate key.
Let sch(ri ) ∩ sch(rj) be the candidate key, then r = r1 ./ r2 ./ ... ./ rn.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 9 / 92



Distributed Data Storage

Horizontal Fragmentation of account Relation

branch name account number balance

Hillside A-305 500
Hillside A-226 336
Hillside A-155 62

Table: account1 = σbranch name=′Hillside′(account)

branch name account number balance

Valleyview A-177 205
Valleyview A-402 10000
Valleyview A-408 1123
Valleyview A-639 750

Table: account2 = σbranch name=′Valleyview ′(account)

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 10 / 92



Distributed Data Storage

Vertical Fragmentation of employee info Relation

branch name customer name tuple id

Hillside Lowman 1
Hillside Camp 2
Valleyview Camp 3
Valleyview Kahn 4
Hillside Kahn 5
Valleyview Kahn 6
Valleyview Green 7

Table: deposit1 = Πbranch name, customer name, tuple id(employee info)

account number balance tuple id

A-305 500 1
A-226 336 2
A-177 205 3
A-402 10000 4
A-155 62 5
A-408 1123 6
A-639 750 7

Table: deposit2 = Πaccount number , balance, tuple id(employee info)

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 11 / 92



Distributed Data Storage

Advantages of Fragmentation

Horizontal:

allows parallel processing on fragments of a relation
allows a relation to be split so that tuples are located where they are
most frequently accessed

Vertical:

allows tuples to be split so that each part of the tuple is stored where it
is most frequently accessed
tuple-id attribute allows efficient joining of vertical fragments
allows parallel processing on a relation

Vertical and horizontal fragmentation can be mixed.

Fragments may be successively fragmented to an arbitrary depth.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 12 / 92



Distributed Data Storage

Data Transparency

Data transparency: Degree to which system user may remain unaware
of the details of how and where the data items are stored in a
distributed system.

fragmentation transparency
replication transparency
location transparency

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 13 / 92



Distributed Data Storage

Naming of Data Items - Criteria

1. Every data item must have a system-wide unique name.

2. It should be possible to find the location of data items efficiently.

3. It should be possible to change the location of data items
transparently.

4. Each site should be able to create new data items autonomously.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 14 / 92



Distributed Data Storage

Centralized Scheme - Name Server

Structure:

name server assigns all names
each site maintains a record of local data items
sites ask name server to locate non-local data items

Advantages:

satisfies naming criteria 1-3

Disadvantages:

does not satisfy naming criterion 4
name server is a potential performance bottleneck
name server is a single point of failure

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 15 / 92



Distributed Data Storage

Use of Aliases

Alternative to centralized scheme: each site prefixes its own site
identifier to any name that it generates, e.g., site17.account.

Fulfills having a unique identifier, and avoids problems associated with
central control.
However, fails to achieve location transparency.

Solution: Create a set of aliases for data items; store the mapping of
aliases to the real names at each site.

The user can be unaware of the physical location of a data item, and
is unaffected if the data item is moved from one site to another.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 16 / 92



Distributed Transactions

Outline

1 Distributed Data Storage

2 Distributed Transactions

3 Commit Protocols
Two Phase Commit (2PC)
Three Phase Commit (3PC)
Persistent Messaging

4 Concurrency Control
Locking
Deadlocks
Timestamping
Weak Consistency

5 Availability

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 17 / 92



Distributed Transactions

Local and Global Transactions

Local transaction:

Accesses and/or updates data at only one site.

Global transaction:

Accesses and/or updates data at several different sites.
Global transactions are split into local subtransactions for execution.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 18 / 92



Distributed Transactions

Distributed Transactions

Each site Si has:

local transaction manager Mi

transaction coordinator Ci

Local transaction manager Mi :

ensures ACID for local transactions
maintains log for recovery purposes
coordinates concurrent execution of local transactions

Transaction coordinator Ci :

starts execution of transactions that originate at site Si (local or global)
distributes subtransactions to appropriate sites for execution
coordinates termination of each transaction that originates at site Si :
either commit at all sites or aborted at all sites

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 19 / 92



Distributed Transactions

Transaction System Architecture

Site S1 Site Sn

C1

M1

Cn
transaction
coordinator

Mn
transaction
manager

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 20 / 92



Distributed Transactions

System Failure Modes

Failures unique to distributed systems:
site failure:

a site is down

loss of messages:

handled by network transmission control protocols such as TCP-IP

communication link failure:

handled by network protocols, by routing messages via alternative links

network partition:

network is split into two or more disconnected subsystems
a subsystem may consist of a single node

Network partitioning and site failures are generally indistinguishable.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 21 / 92



Commit Protocols

Outline

1 Distributed Data Storage

2 Distributed Transactions

3 Commit Protocols
Two Phase Commit (2PC)
Three Phase Commit (3PC)
Persistent Messaging

4 Concurrency Control
Locking
Deadlocks
Timestamping
Weak Consistency

5 Availability

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 22 / 92



Commit Protocols

Commit Protocols

Commit protocols are used to ensure atomicity across sites

a transaction which executes at multiple sites must either be
committed at all the sites, or aborted at all the sites.
not acceptable to have a transaction committed at one site and
aborted at another

The two-phase commit (2PC) protocol is widely used

The three-phase commit (3PC) protocol is more complicated and
more expensive, but avoids some drawbacks of two-phase commit
protocol. This protocol is not used in practice.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 23 / 92



Commit Protocols Two Phase Commit (2PC)

Two Phase Commit Protocol (2PC)

Assumes fail-stop model — failed sites simply stop working, and do
not cause any other harm, such as sending incorrect messages to
other sites.

Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached.

The protocol involves all the local sites at which the transaction
executed

T is a transaction:

initiated at site Si with coordinator Ci , 1 ≤ i ≤ n
executed at sites Sk , 1 ≤ k ≤ n

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 24 / 92



Commit Protocols Two Phase Commit (2PC)

Phase 1: Obtaining a Decision

Coordinator Ci asks all participants to prepare to commit
transaction T .

Ci adds record <prepare T> to the log and forces log to stable storage
sends prepareT messages to all sites at which T is executed

Upon receiving message, transaction manager at site determines if it
can commit the transaction

(a) if not, add a record <abort T> to the log and send abortT message to
Ci

(b) if the transaction can be committed, then:

add the record <ready T> to the log and force all records for T to
stable storage
send readyT message to Ci

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 25 / 92



Commit Protocols Two Phase Commit (2PC)

Phase 2: Recording the Decision

T can be committed if Ci received a readyT message from all the
participating sites, otherwise T must be aborted.

Coordinator adds a decision record, <commit T> or <abort T>, to
the log and forces record onto stable storage. Once the record is on
stable storage it is irrevocable (even if failures occur)

Coordinator sends a message to each participant informing it of the
decision (commit or abort)

Participants take appropriate action locally.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 26 / 92



Commit Protocols Two Phase Commit (2PC)

Handling of Failures - Site Failure

When site Sk (k 6= i) recovers, it examines its log to determine the fate of
transactions active at the time of the failure.

(a) Log contain <commit T> record: T had completed

(b) Log contains <abort T> record: T had failed

(c) Log contains <ready T> record: site must consult Ci to determine
the fate of T .

if T committed, redo(T ); write <commit T> record
if T aborted, undo(T )

(d) The log contains none of the above log records concerning T :

implies that Sk failed before responding to prepareT message from Ci

since Sk did not send readyT message, coordinator Ci must have
aborted T (or will abort after timeout)
Sk executes undo(T )

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 27 / 92



Commit Protocols Two Phase Commit (2PC)

Handling of Failures - Coordinator Failure

If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T ’s fate:

1. If an active site contains a <commit T> record in its log, then T must
be committed.

2. If an active site contains an <abort T> record in its log, then T must
be aborted.

3. If some active participating site does not contain a <ready T> record
in its log, then the failed coordinator Ci cannot have decided to
commit T .

Can therefore abort T ; however, such a site must reject any subsequent
<prepare T> message from Ci

4. If none of the above cases holds, then all active sites must have a
<ready T> record in their logs, but no additional control records (such
as <abort T> of <commit T>).

In this case active sites must wait for Ci to recover, to find decision.

Blocking problem: active sites may have to wait for failed coordinator
to recover.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 28 / 92



Commit Protocols Two Phase Commit (2PC)

Handling of Failures - Network Partition

If the coordinator and all its participants remain in one partition, the
failure has no effect on the commit protocol.

If the coordinator and its participants belong to several partitions:
Sites that are in the same partition as the coordinator (and the
coordinator) think that the sites in the other partitions have failed, and
follow the usual commit protocol.

No harmful results

Sites that are not in the same partition as the coordinator think the
coordinator has failed, and execute the protocol to deal with failure of
the coordinator.

No harmful results, but sites may still have to wait for decision from
coordinator.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 29 / 92



Commit Protocols Two Phase Commit (2PC)

Recovery and Concurrency Control

In-doubt transactions have a <ready T>, but neither a <commit T>,
nor an <abort T> log record.

The recovering site must determine the commit − abort status of
such transactions by contacting other sites; this can be slow and
potentially block recovery.

Recovery algorithms can note lock information in the log.

Instead of <ready T>, write out <ready T, L>, where L = list of
locks held by T when the log is written (read locks can be omitted).
For every in-doubt transaction T , all the locks noted in the <ready T,

L> log record are reacquired.

After lock reacquisition, transaction processing can resume; the
commit or rollback of in-doubt transactions is performed concurrently
with the execution of new transactions.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 30 / 92



Commit Protocols Three Phase Commit (3PC)

Three Phase Commit (3PC)/1

Assumptions:

No network partitioning
At any point, at least one site must be up.
At most K sites (participants as well as coordinator) can fail

Phase 1: Identical to 2PC Phase 1.

Outcome: Every site is ready to commit if instructed to do so.

Phase 2 of 2PC is split into 2 phases, Phase 2 and Phase 3 of 3PC:

In Phase 2 coordinator makes a decision as in 2PC (called the
pre-commit decision) and records it in multiple (at least K additional)
sites.
In Phase 3, coordinator sends commit/abort message to all
participating sites.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 31 / 92



Commit Protocols Three Phase Commit (3PC)

Three Phase Commit (3PC)/2

3PC avoids blocking problem: knowledge of pre-commit decision can
be used to commit despite coordinator failure.

Drawbacks:

higher overheads
assumptions may not be satisfied in practice

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 32 / 92



Commit Protocols Three Phase Commit (3PC)

Three Phase Commit (3PC)/3

Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.

Every site is ready to commit if instructed to do so.
Under 2PC each site is obligated to wait for decision from coordinator.
Under 3PC, knowledge of pre-commit decision can be used to commit
despite coordinator failure.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 33 / 92



Commit Protocols Three Phase Commit (3PC)

3PC: Phase 2. Recording the Preliminary Decision

Coordinator adds a decision record (<abort T> or <precommit T>)
in its log and forces record to stable storage.

Coordinator sends a message to each participant informing it of the
decision.

Participant records decision in its log.

If abort decision reached then participant aborts locally.

If pre-commit decision reached then participant replies with
<acknowledge T>.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 34 / 92



Commit Protocols Three Phase Commit (3PC)

3PC: Phase 3. Recording Decision in the Database

Executed only if decision in phase 2 was to precommit

Coordinator collects acknowledgements. It sends <commit T>

message to the participants as soon as it receives K
acknowledgements.

Coordinator adds the record <commit T> in its log and forces record
to stable storage.

Coordinator sends a commitT message to each participant.

Participants take appropriate action locally.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 35 / 92



Commit Protocols Three Phase Commit (3PC)

3PC: Handling Site Failure/1

Site Failure: Upon recovery, a participating site examines its log and
acts based on the log entries as follows.

Log contains <commit T> record: no action

Log contains <abort T> record: no action

Log contains <ready T>, but no <abort T> or <precommit T>: site
consults Ci to determine the fate of T . If Ci says

T aborted, site executes undo(T ) and writes <abort T> to log;
T committed, site executes redo(T ) and writes <commit T> to log;
T pre-committed, site executes redo(T ) and resumes the protocol
from receipt of precommit T message, i.e., it write <precommit T> to
the log and sends acknowledge T message to coordinator.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 36 / 92



Commit Protocols Three Phase Commit (3PC)

3PC: Handling Site Failure/2

Log contains <precommit T>, but no <abort T> or <commit T>:
site consults Ci to determine the fate of T . If Ci says

T aborted, site executes undo(T ) and writes <abort T> to log;
T committed, site executes redo(T ) and writes <commit T> to log;
T is still in precommit state, site executes redo(T ) and resumes the
protocol, i.e., sends acknowledge T message to coordinator.

Log contains no <ready T> record for a transaction T : site executes
undo(T ) writes <abort T> record

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 37 / 92



Commit Protocols Three Phase Commit (3PC)

3PC: Handling Coordinator Failure

If the coordinator fails, the remaining sites elect a new coordinator.

The new coordinator does the following steps:

1. If any of the remaining sites has a <commit T> entry in the log,
transaction T is committed.

2. If any of the remaining sites has a <precommit T> entry in the log,
the new coordinator resumes the protocol in Phase 3 and tries to
commit transaction T .

3. In all other cases, the new coordinator aborts transaction T .

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 38 / 92



Commit Protocols Persistent Messaging

Alternative Models of Transaction Processing/1

Single transaction spanning multiple sites may be inappropriate for
some applications:

E.g. transaction crossing an organizational boundary: No organization
would like to permit an externally initiated transaction to block local
transactions for an indeterminate period.

Alternative models carry out transactions by sending messages.

Persistent messaging systems:

provide transactional properties for messages
messages are guaranteed to be delivered exactly once

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 39 / 92



Commit Protocols Persistent Messaging

Alternative Models of Transaction Processing/2

Example: funds transfer between two banks

2PC potentially blocks updates on the accounts involved in funds
transfer
Alternative solution:

Debit money from source account and send a message to other site
Site receives message and credits destination account

Messaging has long been used for distributed transactions (even before
computers were invented!)

Atomicity issue
once transaction sending a message is committed, message must be
guaranteed to be delivered

guarantee as long as destination site is up and reachable
code to handle undeliverable messages must also be available (e.g.
credit money back to source account)

if sending transaction aborts, message must not be sent.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 40 / 92



Commit Protocols Persistent Messaging

Error Conditions with Persistent Messaging

Code to handle messages has to take care of variety of failure
situations (even assuming guaranteed message delivery)

E.g. if destination account does not exist, failure message must be sent
back to source site
When failure message is received from destination site, or destination
site itself does not exist, money must be deposited back in source
account

problem if source account has been closed
get humans to take care of problem

User code executing transaction processing using 2PC does not have
to deal with such failures

There are many situations where extra effort of error handling is
worth the benefit of absence of blocking

E.g. pretty much all transactions across organizations

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 41 / 92



Commit Protocols Persistent Messaging

Persistent Messaging and Workflows

Workflows provide a general model of transactional processing
involving multiple sites and possibly human processing of certain steps

E.g. when a bank receives a loan application, it may need to

contact external credit-checking agencies
get approvals of one or more managers

and then respond to the loan application

Persistent messaging forms the underlying infrastructure for workflows
in a distributed environment

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 42 / 92



Commit Protocols Persistent Messaging

Implementation of Persistent Messaging/1

Sending site protocol

When a transaction wishes to send a persistent message, it writes a
record containing the message in a special relation messages to send ;
the message is given a unique message identifier.
A message delivery process monitors the relation, and when a new
message is found, it sends the message to its destination.
The message delivery process deletes a message from the relation only
after it receives an acknowledgment from the destination site.

If it receives no acknowledgement from the destination site, after some
time it sends the message again. It repeats this until an
acknowledgment is received.
If after some period of time, that the message is undeliverable,
exception handling code provided by the application is invoked to deal
with the failure.

Writing the message to a relation and processing it only after the
transaction commits ensures that the message will be delivered if and
only if the transaction commits.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 43 / 92



Commit Protocols Persistent Messaging

Implementation of Persistent Messaging/2

Receiving site protocol
When a site receives a persistent message, it runs a transaction that
adds the message to a received messages relation

provided message identifier is not already present in the relation

After the transaction commits, or if the message was already present in
the relation, the receiving site sends an acknowledgment back to the
sending site.

sending the acknowledgment before the transaction commits is not safe
since a system failure may then result in loss of the message.

In many messaging systems, it is possible for messages to get delayed
arbitrarily, although such delays are very unlikely.

Each message is given a timestamp, and if the timestamp of a received
message is older than some cutoff, the message is discarded.
All messages recorded in the received messages relation that are older
than the cutoff can be deleted.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 44 / 92



Concurrency Control

Outline

1 Distributed Data Storage

2 Distributed Transactions

3 Commit Protocols
Two Phase Commit (2PC)
Three Phase Commit (3PC)
Persistent Messaging

4 Concurrency Control
Locking
Deadlocks
Timestamping
Weak Consistency

5 Availability

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 45 / 92



Concurrency Control

Concurrency Control

Modify concurrency control schemes for use in distributed
environment.

We assume that each site participates in the execution of a commit
protocol to ensure global transaction atomicity.

We assume all replicas of any item are updated

Will see how to relax this in case of site failures later

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 46 / 92



Concurrency Control Locking

Single-Lock-Manager Approach/1

System maintains a single lock manager that resides in a single
chosen site, say Si
When a transaction needs to lock a data item, it sends a lock request
to Si and lock manager determines whether the lock can be granted
immediately

If yes, lock manager sends a message to the site which initiated the
request
If no, request is delayed until it can be granted, at which time a
message is sent to the initiating site

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 47 / 92



Concurrency Control Locking

Single-Lock-Manager Approach/2

The transaction can read the data item from any one of the sites at
which a replica of the data item resides.

Writes must be performed on all replicas of a data item

Advantages of scheme:

Simple implementation
Simple deadlock handling

Disadvantages of scheme are:

Bottleneck: lock manager site becomes a bottleneck
Vulnerability: system is vulnerable to lock manager site failure.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 48 / 92



Concurrency Control Locking

Distributed Lock Manager

In this approach, functionality of locking is implemented by lock
managers at each site

Lock managers control access to local data items

Advantage: work is distributed and can be made robust to failures

Disadvantage: deadlock detection is more complicated

Lock managers cooperate for deadlock detection

Several variants of this approach

Primary copy
Majority protocol
Biased protocol
Quorum consensus

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 49 / 92



Concurrency Control Locking

Primary Copy

Choose one replica of data item to be the primary copy.

Site containing the replica is called the primary site for that data item
Different data items can have different primary sites

When a transaction needs to lock a data item Q, it requests a lock at
the primary site of Q.

Implicitly gets lock on all replicas of the data item

Benefit

Concurrency control for replicated data handled similarly to
unreplicated data — simple implementation.

Drawback

If the primary site of Q fails, Q is inaccessible even though other sites
containing a replica may be accessible.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 50 / 92



Concurrency Control Locking

Majority Protocol/1

Local lock manager at each site administers lock and unlock requests
for data items stored at that site.

When a transaction wishes to lock an unreplicated data item Q
residing at site Si , a message is sent to Si ’s lock manager.

If Q is locked in an incompatible mode, then the request is delayed
until it can be granted.
When the lock request can be granted, the lock manager sends a
message back to the initiator indicating that the lock request has been
granted.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 51 / 92



Concurrency Control Locking

Majority Protocol/2

In case of replicated data

If Q is replicated at n sites, then a lock request message must be sent
to more than half of the n sites in which Q is stored.
The transaction does not operate on Q until it has obtained a lock on
a majority of the replicas of Q.
When writing the data item, transaction performs writes on all replicas.

Benefit
Can be used even when some sites are unavailable

details on how handle writes in the presence of site failure later

Drawback

Requires 2(n/2 + 1) messages for handling lock requests, and (n/2 + 1)
messages for handling unlock requests.
Potential for deadlock even with single item — e.g., each of 3
transactions may have locks on 1/3rd of the replicas of a data.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 52 / 92



Concurrency Control Locking

Biased Protocol

Local lock manager at each site as in majority protocol, however,
requests for shared locks are handled differently than requests for
exclusive locks.

Shared locks: When a transaction needs to lock data item Q, it
simply requests a lock on Q from the lock manager at one site
containing a replica of Q.

Exclusive locks: When transaction needs to lock data item Q, it
requests a lock on Q from the lock manager at all sites containing a
replica of Q.

Advantage — imposes less overhead on read operations.

Disadvantage — additional overhead on writes

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 53 / 92



Concurrency Control Locking

Quorum Consensus Protocol

A generalization of both majority and biased protocols

Each site is assigned a weight.

Let S be the total of all site weights

Choose two values read quorum Qr and write quorum Qw

Suchthat Qr + Qw > S and 2 ∗ Qw > S
Quorums can be chosen (and S computed) separately for each item

Each read must lock enough replicas that the sum of the site weights
is ≥ Qr

Each write must lock enough replicas that the sum of the site weights
is ≥ Qw

For now we assume all replicas are written

Extensions to allow some sites to be unavailable described later

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 54 / 92



Concurrency Control Deadlocks

Deadlock Handling

Consider the following two transactions and history, with item X and
transaction T1 at site 1, and item Y and transaction T2 at site 2:

T1: write(X ) T2: write(Y )
write(Y ) write(X )

X -lock on X
write(X ) X -lock on Y

write(Y )
wait for X -lock on X

wait for X -lock on Y

Result: deadlock which cannot be detected locally at either site

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 55 / 92



Concurrency Control Deadlocks

Centralized Approach

A global wait-for graph is constructed and maintained in a single site:
the deadlock-detection coordinator

Real graph: Real, but unknown, state of the system.
Constructed graph: Approximation generated by the controller during
the execution of its algorithm.

The global wait-for graph can be constructed when:

a new edge is inserted in or removed from one of the local wait-for
graphs;
a number of changes have occurred in a local wait-for graph;
the coordinator needs to invoke cycle-detection.

If the coordinator finds a cycle, it selects a victim and notifies all
sites. The sites roll back the victim transaction.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 56 / 92



Concurrency Control Deadlocks

Local and Global Wait-For Graphs

T1 T2

T3T5

site S1

T2

T3

T4

site S2

Local

T1 T2

T3

T4

T5

Global

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 57 / 92



Concurrency Control Deadlocks

Example Wait-For Graph for False Cycles

Initial state:

T1

T2

S1

T1

T3

S2

Initial state:

T1

T2 T3

coordinator

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 58 / 92



Concurrency Control Deadlocks

False Cycles

Suppose that starting from the state shown in figure,
T2 releases resources at S1

resulting in a message remove T1 → T2 message from the Transaction
Manager at site S1 to the coordinator)

then T2 requests a resource held by T3 at site S2
resulting in a message insert T2 → T3 from S2 to the coordinator

Suppose further that the insert message reaches before the delete
message

this can happen due to network delays

The coordinator would then find a false cycle

T1 → T2 → T3 → T1

The false cycle above never existed in reality.

False cycles cannot occur if two-phase locking is used.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 59 / 92



Concurrency Control Deadlocks

Unnecessary Rollbacks

Unnecessary rollbacks may result when deadlock has indeed occurred
and a victim has been picked, and meanwhile one of the transactions
was aborted for reasons unrelated to the deadlock.

Unnecessary rollbacks can result from false cycles in the global
wait-for graph; however, likelihood of false cycles is low.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 60 / 92



Concurrency Control Timestamping

Timestamp-Based Protocols/1

Each transaction is issued a timestamp when it enters the system. If
an old transaction Ti has time-stamp TS(Ti ), a new transaction Tj is
assigned time-stamp TS(Tj) such that TS(Ti ) < TS(Tj).

The protocol manages concurrent execution such that the
time-stamps determine the serializability order.

In order to assure such behavior, the protocol maintains for each data
Q two timestamp values:

W -timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully.
R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully.

The timestamp ordering protocol ensures that any conflicting read
and write operations are executed in timestamp order.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 61 / 92



Concurrency Control Timestamping

Timestamp-Based Protocols/2

Transaction Ti issues a read(Q):
1. If TS(Ti ) <W -timestamp(Q), then Ti needs to read a value of Q

that was already overwritten.

Hence, the read operation is rejected, and Ti is rolled back.

2. Otherwise the read operation is executed, and R-timestamp(Q) is set
to max(R-timestamp(Q),TS(Ti )).

Transaction Ti issues write(Q):
1. If TS(Ti ) < R-timestamp(Q), then the value of Q that Ti is producing

was needed previously, and the system assumed that that value would
never be produced.

Hence, the write(Q) operation is rejected, and Ti is rolled back.

2. If TS(Ti ) <W -timestamp(Q), then Ti is attempting to write an
obsolete value of Q.

Hence, this write(Q) operation is rejected, and Ti is rolled back.

3. Otherwise, the write(Q) operation is executed, and W -timestamp(Q)
is set to TS(Ti ).

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 62 / 92



Concurrency Control Timestamping

Example Use of the Protocol

A partial schedule for several data items for transactions with timestamps
1, 2, 3, 4, 5

T1 T2 T3 T4 T5

read(X )
read(Y )

read(Y )
write(Y )
write(Z )

read(Z )
read(Z )
abort

read(X )
read(W )

write(W )
abort

write(Y )
write(Z )

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 63 / 92



Concurrency Control Timestamping

Timestamping/1

Timestamp based concurrency-control protocols can be used in
distributed systems.

Each transaction must be given a unique timestamp.

Main problem: how to generate a timestamp in a distributed fashion?

Each site generates a unique local timestamp using either a logical
counter or the local clock.
Global unique timestamp 〈x , y〉 is obtained by concatenating the
unique local timestamp x with the unique identifier y .

x
local unique

timestamp

x y global unique
timestamp

y site
identifier

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 64 / 92



Concurrency Control Timestamping

Timestamping/2

A site with a slow clock will assign smaller timestamps

still logically correct: serializability not affected
but: “disadvantages” transactions

Lamport-Clocks fix this problem:

each site Si defines a logical clock LCi , which generates the unique
local timestamp;
increment timestamp LCi for each new transactions issued by Si ;
whenever a read or write request is received from a transaction Ti with
timestamp 〈x , y〉 and x > LCi , then set LCi to x + 1.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 65 / 92



Concurrency Control Weak Consistency

Replication with Weak Consistency/1

Many commercial databases support replication of data with weak
degrees of consistency (i.e., without a guarantee of serializabiliy)

Example: master-slave replication: updates are performed at a single
“master” site, and propagated to “slave” sites.

Propagation is not part of the update transaction: its is decoupled

May be immediately after transaction commits
May be periodic

Data may only be read at slave sites, not updated

No need to obtain locks at any remote site

Particularly useful for distributing information

E.g. from central office to branch-office

Also useful for running read-only queries offline from the main database

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 66 / 92



Concurrency Control Weak Consistency

Replication with Weak Consistency/2

Replicas should see a transaction-consistent snapshot of the database

That is, a state of the database reflecting all effects of all transactions
up to some point in the serialization order, and no effects of any later
transactions.

Example: Oracle provides a create snapshot statement to create a
snapshot of a relation or a set of relations at a remote site

snapshot refresh either by recomputation or by incremental update
automatic refresh (continuous or periodic) or manual refresh

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 67 / 92



Concurrency Control Weak Consistency

Multimaster and Lazy Replication

With multimaster replication (also called update-anywhere
replication) updates are permitted at any replica, and are
automatically propagated to all other replicas

basic model in distributed databases, where transactions are unaware of
the details of replication
database system propagates updates as part of the same transaction

coupled with 2 phase commit

Many systems support lazy propagation where updates are
transmitted after transaction commits

allows updates to occur even if some sites are disconnected from the
network, but at the cost of consistency

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 68 / 92



Availability

Outline

1 Distributed Data Storage

2 Distributed Transactions

3 Commit Protocols
Two Phase Commit (2PC)
Three Phase Commit (3PC)
Persistent Messaging

4 Concurrency Control
Locking
Deadlocks
Timestamping
Weak Consistency

5 Availability

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 69 / 92



Availability

Availability

High availability: time for which system is not fully usable should be
extremely low (e.g. 99.99% availability)

Robustness: ability of system to function spite of failures of
components

Failures are more likely in large distributed systems

To be robust, a distributed system must

Detect failures
Reconfigure the system so computation may continue
Recovery/reintegration when a site or link is repaired

Failure detection: distinguishing link failure from site failure is hard

(partial) solution: have multiple links, multiple link failure is likely a
site failure

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 70 / 92



Availability

Reconfiguration/1

Reconfiguration:
Abort all transactions that were active at a failed site

making them wait could interfere with other transactions since they
may hold locks on other sites
however, in case only some replicas of a data item failed, it may be
possible to continue transactions that had accessed data at a failed site

If replicated data items were at failed site, update system catalog to
remove them from the list of replicas.

this should be reversed when failed site recovers, but additional care
needs to be taken to bring values up to date

If a failed site was a central server for some subsystem, an election
must be held to determine the new server

e.g. name server, concurrency coordinator, global deadlock detector

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 71 / 92



Availability

Reconfiguration/2

Since network partition may not be distinguishable from site failure,
the following situations must be avoided:

two ore more central servers elected in distinct partitions
more than one partition updates a replicated data item

Updates should be able to continue even if some sites are down

Solution: majority based approach

alternative of “read one write all available” is tantalizing but causes
problems

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 72 / 92



Availability

Majority-Based Approach/1

The majority protocol for distributed concurrency control can be
modified to work even if some sites are unavailable.

Each replica of each item has a version number which is updated
when the replica is updated, as outlined below.

A lock request is sent to more than 1/2 the sites at which item
replicas are stored and operation continues only when a lock is
obtained on a majority of the sites.

Read operations look at all replicas locked, and read the value from
the replica with largest version number.

may write this value and version number back to replicas with lower
version numbers (no need to obtain locks on all replicas for this task)

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 73 / 92



Availability

Majority-Based Approach/2

Write operations

find highest version number like read, and set new version number to
old highest version + 1
writes are then performed on all locked replicas and version number on
these replicas is set to new version number

Failures (network and site) cause no problems as long as

sites at commit contain a majority of replicas of any updated data items
during reads a majority of replicas are available to find version numbers
subject to above, 2 phase commit can be used to update replicas

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 74 / 92



Availability

Read One Write All (Available)

Quorum consensus algorithm can be similarly extended

Biased protocol is a special case of quorum consensus

allows reads to read any one replica but updates require all replicas to
be available at commit time (called read one write all)

Read one write all available (ignoring failed sites) is attractive, but
incorrect

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 75 / 92



Availability

Link Failure and Network Partitioning

Link failure:

Failed link may come back up, without a disconnected site ever being
aware that it was disconnected.
The site then has old values, and a read from that site would return an
incorrect value.
If site was aware of failure, reintegration could have been performed,
but no way to guarantee this.

Network partitioning:

With network partitioning, sites in each partition may update same
item concurrently (believing sites in other partitions have all failed).

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 76 / 92



Availability

Site Reintegration

When failed site recovers, it must catch up with all updates that it
missed while it was down.

Problem: updates may be happening to items whose replica is stored
at the site while the site is recovering.

Solution 1: halt all updates on system while reintegrating a site

unacceptable disruption

Solution 2: lock all replicas of all data items at the site, update to
latest version, then release locks.

other solutions with better concurrency also available

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 77 / 92



Availability

Comparison with Remote Backup

Remote backup (hot spare) systems are also designed to provide high
availability.

simpler and lower overhead
all actions performed at a single site, and only log records shipped
no need for distributed concurrency control or 2 phase commit

Distributed databases with replicas of data items

provide higher availability by having multiple (> 2) replicas and using
the majority protocol
avoid failure detection and switchover time associated with remote
backup systems

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 78 / 92



Availability

Coordinator Selection

Backup coordinators

site which maintains enough information locally to assume the role of
coordinator if the actual coordinator fails
executes the same algorithms and maintains the same internal state
information as the actual coordinator
allows fast recovery from coordinator failure, but involves overhead
during normal processing.

Election algorithms

used to elect a new coordinator in case of failures
Example: Bully Algorithm — applicable to systems where every site
can send a message to every other site.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 79 / 92



Availability

Bully Algorithm

Bully algorithm:

all nodes Si are numbered
node with highest i-value is coordinator

Coordinator election algorithm (started by Si ):

Si sends an election message to every site Sk with k > i and waits for
response (”alive” message) within T .
no response: Si elects itself and informs all Sj , j < i .
response: Wait for the outcome of the coordinator election. (After
timeout interval T ′, restart election from scratch.)

Si starts coordinator election (tries to elect itself coordinator) if

coordinator failure: coordinator does not answer within time interval T
recovery: when Si recovers from failure
→ even if there is already a coordinator in the system
election message received: Si is not coordinator and receives election
message from some note Sj , j < i
→ if Si is coordinator there is no need for election and Sj is informed

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 80 / 92



Availability

What is Consistency?

Consistency in Databases (ACID):

database has a set of integrity constraints
a database state is consistent when all integrity constraints are satisfied
each transaction run individually on a consistent database state must
leave the database in a consistent state

Consistency in distributed systems with replication

Strong consistency1: a schedule with read and write operations on a
replicated object should give results and final state equivalent to some
schedule on a single copy of the object, with the order of operations
from a single site preserved
→ replicated data item appears to be a single data item stored in
shared memory to which different sites have sequential access
Weak consistency (several forms)

1Also “sequential consistency”, defined by L. Lamport, 1979
Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 81 / 92



Availability

Availability

Traditionally, availability of centralized server

For distributed systems: availability of system to process requests

In large distributed system failures frequently happen:

a node is down
network partitioning

Distributed consensus algorithms will block during partitions to ensure
consistency

Some applications require high availability even at cost of consistency

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 82 / 92



Availability

Brewer’s CAP Theorem

Three properties of a system

Consistency: Every read receives the most recent write or an error.

Availability: Every request received by a non-failing node must result in
a response, i.e., if part of the system fails, the remaining system is still
able to processes read and write request.

Partition tolerance: The system continues to operate even if any
number of messages between the nodes are dropped or delayed, i.e.,
due to network issues, the system breaks into multiple parts that are
each active but cannot talk to each other.

Brewer’s CAP “Theorem”: You can have at most two of these three
properties for any system

Very large systems will partition at some point
⇒ choose one of consistency or availablity

traditional databases choose consistency
most Web applications choose availability (except for specific parts
such as order processing)

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 83 / 92



Availability

Replication with Weak Consistency

Many systems support replication of data with weak degree of
consistency (i.e., without a guarantee of serializability)

Qr + Qw ≤ S or 2 ∗ Qw < S

Trade off consistency for:

availability: when not enough sites are available to ensure quorum
low latency: small Qr -values allow fast local reads

Key issues:

Reads may get old versions
Writes may occur in parallel, leading to inconsistent versions

Question: how to detect, and how to resolve

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 84 / 92



Availability

Example: Trade off Consistency for Availability or Latency

Real systems may use a mix of tradeoff options.

Example: Yahoo!’s PNUTS distributed database

allows inconsistent reads to reduce latency (critical for many
applications)
but consistent updates (via master) to ensures consistency over
availability

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 85 / 92



Availability

Example: CAP Choice of Various Systems

Source: http://blog.nahurst.com/visual-guide-to-nosql-systems

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 86 / 92



Availability

BASE Properties

BASE is an acronym for

Basically Available: availability is given priority over consistency
Soft state: copies of a data item may be inconsistent
Eventual Consistency: copies becomes consistent at some later time if
there are no more updates to that data item.

BASE is an alternative to ACID as used in traditional databases.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 87 / 92



Availability

Eventual Consistency

Definition 1: When no updates occur for a long period of time,
eventually all updates will propagate through the system and all the
nodes will be consistent.

Definition 2: For a given accepted update and a given node,
eventually either the update reaches the node or the node is removed
from service.

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 88 / 92



Availability

How to converge?

Anti entropy: exchange versions

Conflict detection:

timestamp: can identify last writer, but cannot distinguish sequential
from branching version history
vector clocks: detects branching histories (i.e. conflicting updates)

Reconciliation: decide on final state

last updater wins: data item with highest time stamp is final state
user defined: user must solve conflict

When to reconcile?

read repair: fix conflicts at read time
write repair: fix conflicts at write time
asynchronous repair: separate process fixes conflicts

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 89 / 92



Availability

Vector Clock/1

Replica: each data item is replicated at n sites Si , 1 ≤ i ≤ n

Data item: di is the copy of data item d at site Si
Vector clock:

each di has vector Vi [j ], 1 ≤ j ≤ n
Vi [j ]: timestamp of data item d at site Sj as known by Si
initialization: Vi [j ]← 0, 1 ≤ i , j ≤ n

Local update at site Si : Vi [i ]← Vi [i ] + 1

Copy from remote site Sk with vector Vk to Si :

Vi [i ]← Vi [i ] + 1
for all 1 ≤ j ≤ n: Vi [j ]← max (Vi [j ],Vk [j ])

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 90 / 92



Availability

Vector Clock/2

Exchange versions between replica Si , Sj
di with vector Vi from site Si
dj with vector Vj from site Sj

Conflict detection:

a. ∃x , y : Vi [x ] < Vj [x ] ∧ Vi [y ] > Vj [y ]: branching history
b. otherwise: linear history

Linear History: dj is a newer version of di
the updates of dj include the updates of di
reconciliation: keep new version, di ← dj

Branching history: conflicting updates

di and dj have received independent updates in parallel
reconciliation: some sort of conflict resolution (e.g. user interaction)

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 91 / 92



Availability

Vector Clock/3 – Example

Source: https://commons.wikimedia.org/wiki/File:Vector_Clock.svg

Augsten (Univ. Salzburg) PDDM – Distributed Databases Sommersemester 2025 92 / 92


