
DEPARTMENT OF COMPUTER SCIENCE
Prof. Dr. Nikolaus Augsten
Jakob-Haringer-Str. 2
5020 Salzburg, Austria
Phone: +43 662 8044 6347
E-Mail: nikolaus.augsten@plus.ac.at

Databases II Exam
Winter Semester 2024/25 26.2.2025

Name: Student ID:

Hints

• Check whether you received all pages of the exam (11 pages).

• Write your name or your student ID on each sheet of the exam and hand in all pages.

• All answers are expected to be written on the exam sheets.

• Clearly highlight and enumerate additional pages that are used for longer answers. Match your
text with the according exercise.

• Only use pencils that are permanent and non-red colored.

• Use the notation and techniques discussed in the lecture.

• Exercises with more than one solution are not graded.

• You are allowed to use one A4 sheet with your personal notes (both sides, hand written or
printed).

• Exam duration: 90 minutes

Signature

Grading Filled by the examiner

Exercise 1 2 3 4 5 6 7 8 9 10 Sum
Total points 1 1 1 1 1 1 1 1 1 1 10
Points reached

2/11

Exercise 1 - Buffer Management. 1 Point

Consider a system with a (initially empty) buffer of size 4 (i.e., the buffer can store 4
pages). MRU (most recently used) is used as the replacement strategy. Consider the
following page access pattern of the pages A,B,C,D,E:

E A A D C E B E B A E B C A

What is the number of disk accesses? Which pages are stored in the buffer after the
sequence of page accesses? Complete the following table. Buffer hits are marked with
“*”.

buffer page 1 E
buffer page 2 A *
buffer page 3 D
buffer page 4

Name: Student ID: 3/11

Exercise 2 - Extendible Hashing. 1 Point

The hash function ℎ(𝑥) returns the binary values as shown in the table. Fill in the
missing values and components (global/local depth, pointer).

Hash table:

Name (𝑥) ℎ(𝑥)
Arya 0010
Cersei 0100
Daario 0110
George 1000
Jon 1100
Melisandre 1110
Robb 1011
Shae 0111
Tyrion 0101
Ygritte 0001

000
001
010
011
100
101
110
111

3

Arya
Ygritte

Tyrion
3

Shae
Daario

George
2

Jon
2

4/11

Exercise 3 - B+-Tree Insertion. 1 Point

Given the following B+-tree with 𝑚 = 3. Draw the B+-tree after inserting the key
Isaac.

Karen

Henry Juliet

Burton Carlton Henry Joseph Juliet

Shawn

Karen Shawn Woodrow

Name: Student ID: 5/11

Exercise 4 - Indexes with Composite Search Keys. 1 Point

Consider an ordered composite index on the attributes (LanguageFamily, Language, NumSpeaker)
in that order. State whether the index structure can be used to efficiently answer the
following query predicates. Explain your answers briefly.

1. WHERE Language=“Spanish” AND LanguageFamily=“Romance”

2. WHERE Language=“Mandarin” AND 107<NumSpeaker<109

3. WHERE LanguageFamily=“Germanic” AND Language=“English”
AND 106<NumSpeaker<107

4. WHERE LanguageFamily=“Slavic”

6/11

Exercise 5 - Bitmap Index Scan. 1 Point

Given relation 𝑅[𝐴,𝐵] with the following properties:

• |𝑅| = 106 tuples are stored on 𝑏𝑅 = 103 blocks,
• non-clustering B+-tree index on attribute 𝐵, 𝑚 = 1024, and maximum height

(i.e., each node is minimally occupied),
• duplicates are resolved via tuple identifiers (TID),
• the value 2500 on attribute 𝐵 is stored 103 times in total and distributed among

100 data blocks.

The following query should be answered:

𝜎𝐵=2500 (𝑅)

Determine the number of data block accesses in the worst case

a. without using a bitmap index scan (0.5 points),
b. by using a bitmap index scan (0.5 points).

Name: Student ID: 7/11

Exercise 6 - Join Algorithms. 1 Point

Which join algorithm (Merge Join, Index Nested Loop Join) provides the minimal
costs in the given scenario? State the costs for both algorithms.

Compute the natural join between relations 𝑅[𝐴,𝐵] and 𝑆[𝐵,𝐶] with |𝑅| = 1000 and
|𝑆| = 12000 tuples. The relations are stored on 𝑏𝑅 = 250 and 𝑏𝑆 = 2000 consecutive
blocks. There is a sparse B+-tree index on 𝑆.𝐵, where each node in the B+-tree
stores 20 keys. No index on 𝑅.𝐴 is available. Assume that sorting 𝑏 blocks requires
⌈𝑏 ⋅ log2(𝑏)⌉ block accesses.

8/11

Exercise 7 - Efficient Query Processing. 1 Point

Consider a relation 𝑅[𝐴]. There is a sparse B+-tree index of attribute 𝑅.𝐴 What
is the most efficient strategy for processing range queries of the following type?

𝜎𝑎<𝐴<𝑏(𝑅)

Describe all necessary steps.

Name: Student ID: 9/11

Exercise 8 - Join Size Estimation. 1 Point

Consider the following 3 relations 𝑅[𝐴,𝐵,𝐶], 𝑆[𝐴,𝐷,𝐸], 𝑇 [𝐷,𝐸, 𝐹] and their prop-
erties:

• |𝑅[𝐴,𝐵,𝐶]| = 1000 tuples, 𝑉 (𝑅,𝐴) = 100, 𝑉 (𝑅,𝐵) = 200, 𝑉 (𝑅,𝐶) = 300

• |𝑆[𝐴,𝐷,𝐸]| = 4000 tuples, 𝑉 (𝑆,𝐴) = 50, 𝑉 (𝑆,𝐷) = 200, 𝑉 (𝑆,𝐸) = 300

• |𝑇 [𝐷,𝐸, 𝐹]| = 2000 tuples, 𝑉 (𝑇 ,𝐷) = 200, 𝑉 (𝑇 ,𝐸) = 400, 𝑉 (𝑇 , 𝐹) = 600

Attribute values are assumed to be distributed uniformly and independently. Estimate
the size of the following query. (𝜎𝐴=100(𝑅) ≠ ∅).

(𝜎𝐴=100(𝑅))⨝𝑆⨝𝑇

10/11

Exercise 9 1 Point

Consider the following schedule. State whether the schedule is

1. conflict serializable,

2. recoverable, and

3. cascadeless.

Explain your answer!

T1: T2: T3:
──────────────────────────────
write(A)
──────────────────────────────

read(D)
──────────────────────────────

write(A)
──────────────────────────────

write(D)
──────────────────────────────
write(D)
──────────────────────────────
commit
──────────────────────────────

write(C)
──────────────────────────────

read(A)
──────────────────────────────

commit
──────────────────────────────

commit
──────────────────────────────

Name: Student ID: 11/11

Exercise 10 1 Point

Can the following schedule be the output of a strict two-phase locking scheduler?
If yes, add all required lock/unlock instructions. Otherwise, explain why.

T1: T2: T3:
──────────────────────────────

read(A)

read(B)

read(A)

write(A)

write(B)

COMMIT

read(A)

read(B)

read(B)

read(A)

COMMIT

COMMIT
──────────────────────────────

