
DEPARTMENT OF COMPUTER SCIENCE
Prof. Dr. Nikolaus Augsten
Jakob-Haringer-Str. 2
5020 Salzburg, Austria
Phone: +43 662 8044 6347
E-Mail: nikolaus.augsten@plus.ac.at

Databases II Exam
Winter Semester 2024/25 16.05.2025

Name: Student ID:

Hints

• Check whether you received all pages of the exam (11 pages).

• Write your name or your student ID on each sheet of the exam and hand in all pages.

• All answers are expected to be written on the exam sheets.

• Clearly highlight and enumerate additional pages that are used for longer answers. Match your
text with the according exercise.

• Only use pencils that are permanent and non-red colored.

• Use the notation and techniques discussed in the lecture.

• Exercises with more than one solution are not graded.

• You are allowed to use one A4 sheet with your personal notes (both sides, hand written or
printed).

• Exam duration: 90 minutes

Signature

Grading Filled by the examiner

Exercise 1 2 3 4 5 6 7 8 9 10 Sum
Total points 1 1 1 1 1 1 1 1 1 1 10
Points reached

2/11

Exercise 1 - Slotted Page. 1 Point

We want to store tuples inside the following table:

CREATE TABLE books (
bid INTEGER,
btitle VARCHAR(20)

);

Storing an INTEGER requires 4 bytes. Storing strings as a VARCHAR requires one byte
for each character and an additional byte for termination. As an example, the string
DBMS requires 5 bytes.

The tupes are stored inside a slotted page with the following properties:

• Size: 213 = 8192 bytes
• Addressing mode: Byte addressing (individual bytes can be addressed)

The following operations are performed in that order:

INSERT INTO books VALUES (42, ’Categoriae’); – Tuple A
INSERT INTO books VALUES (13, ’Analytica-priora’); – Tuple B
INSERT INTO books VALUES (37, ’De-sophisticis-elenchis’); – Tuple C

Fill in the missing values/addresses of the slotted page. Numerical values are
expected, using arrows as pointers does not suffice. 𝑝𝑖 and 𝑔𝑖 correspond to the tuple
𝑑𝑖.

𝑎 𝑓 𝑔1 𝑝1 𝑔2 𝑝2 𝑔3 𝑝3 … 𝑑3 𝑑2 𝑑1

𝐶 𝐵 𝐴

Name: Student ID: 3/11

Exercise 2 - Static Hashing. 1 Point

Construct a hash index based on attribute Account Nr in the following table. The hash
value is first digit of the attribute value. Each bucket stores up to 3 tuples. Overflow
chaining is used to resolve bucket overflows. Note that a pointer to an overflow bucket
needs one entry in the bucket. Illustrate the resulting hash index.

Owner Name Account Nr Balance
Donovan 579976 2.467
Kermit 585989 7.824
Solomon 489384 6.824
Gavin 579331 3.850
Kelly 630468 8.949
Angelica 676246 6.452
Fredericka 589374 8.888
Caesar 682535 2.776
Chanda 304225 2.014
Patricia 886712 7.726

4/11

Exercise 3 - B+-Tree Deletion. 1 Point

Given the following B+-tree with 𝑚 = 5. Draw the B+-tree after deleting the key 10.

9 12 18 21

4 6 7 8 9 10 12 14 16 17 18 19 20 21 23 25 27

Name: Student ID: 5/11

Exercise 4 - Indexes with Composite Search Keys. 1 Point

Consider a relation 𝑅[𝐴,𝐵,𝐶,𝐷] and the following four query predicates. State the
order of the attributes of (up to) two ordered composite indexes that allow computing
all four queries efficiently using those indexes.

1. WHERE 𝐵 = 42 AND 𝐶 < 100

2. WHERE 𝐴 < 50 AND 𝐵 = 84

3. WHERE 𝐵 = 42 AND 𝐶 < 100 AND 𝐴 = 100

4. WHERE 𝐶 = 100 AND 𝐷 > 50 AND 𝐵 = 42

6/11

Exercise 5 - External Merge Sort. 1 Point

Conduct external merge sort on the given relation 𝑅[𝐴].
A block can hold 2 tuples, the memory buffer can hold up to 4 blocks.

11
25
10
0
13
9
7
22
18
5
16
3
24
20
12
8
6
2
19
14
4
21
23
17
15
1

Name: Student ID: 7/11

Exercise 6 - Join Algorithms. 1 Point

Which join algorithm (Hash Join, Index Nested Loop Join) provides the minimal
costs in the given scenario? State the costs for both algorithms.

Compute the natural join between relations 𝑅[𝐴,𝐵] and 𝑆[𝐵,𝐶] with |𝑅| = 1000 and
|𝑆| = 12000 tuples. The relations are stored on 𝑏𝑅 = 250 and 𝑏𝑆 = 2000 consecutive
blocks. The buffer fits 𝑀 = 21 blocks. There is a sparse B+-tree index on 𝑆.𝐵,
where each node in the B+-tree can store up to 20 search keys. The B+-tree index has
maximum height.

8/11

Exercise 7 - Efficient Query Processing. 1 Point

Consider a relation 𝑅[𝐴,𝐵]. There is a sparse B+-tree index on attribute 𝑅.𝐴 and
a dense hash index on attribute 𝑅.𝐵. Values of attribute 𝐵 are unique. What is the
most efficient strategy for processing queries of the following type?

𝜎𝐴<𝑎 ∨ 𝐵=𝑏(𝑅)

Describe all necessary steps.

Name: Student ID: 9/11

Exercise 8 - Query Optimization. 1 Point

Consider the following relations:

(B)oats(bid, name, color)
(S)ailors(sid, name, rating, age)

(R)eservations(bid, sid, day)

Furthermore, consider the following SQL query:

SELECT DISTINCT B.name
FROM Boats B, Sailors S, Reservations R

WHERE S.age < 40
AND B.color = ’blue’
AND B.bid = R.bid
AND S.sid = R.sid;

a. Write the given SQL query in algebraic normal form using an operator
tree.

b. Optimize the operator tree using heuristic optimization.

10/11

Exercise 9 1 Point

Consider the following schedule 𝑆:

T1: T2: T3: T4:
──

write(D)
──

read(A)
──

write(A)
──
write(A)
──

write(B)
──

read(C)
──

read(C)
──

commit
──

read(D)
──

commit
──

read(A)
──
commit
──

read(B)
──

commit
──

Decide for each of the following options whether it is true (T) or false (F).
Incorrect answers will result in points being deducted.

1. There is only one equivalent serial schedule to 𝑆.

2. The precedence graph of 𝑆 has six edges.

3. 𝑆 is a recoverable schedule.

4. 𝑆 is a cascadeless schedule.

Name: Student ID: 11/11

Exercise 10 1 Point

Can the following schedule be the output of a strict two-phase locking scheduler?
If yes, add all required lock/unlock instructions. Otherwise, explain why.

T1: T2: T3:
──────────────────────────────

read(A)

read(B)

read(A)

write(A)

write(B)

COMMIT

read(A)

read(B)

read(B)

read(A)

COMMIT

COMMIT
──────────────────────────────

