DEPARTMENT OF COMPUTER SCIENCE

Prof. Dr. Nikolaus Augsten

Jakob-Haringer-Str. 2 5020 Salzburg, Austria Phone: +43 662 8044 6347 E-Mail: nikolaus.augsten@plus.ac.at

Grading

Filled by the examiner

Databases II Winter Semester 2024/25

Exam 16.05.2025

Nam	e: Student ID:
Hints	
VACtoCUEYP	Check whether you received all pages of the exam (11 pages). Write your name or your student ID on each sheet of the exam and hand in all pages. All answers are expected to be written on the exam sheets. Clearly highlight and enumerate additional pages that are used for longer answers. Match your ext with the according exercise. Only use pencils that are permanent and non-red colored. Use the notation and techniques discussed in the lecture. Exercises with more than one solution are not graded. You are allowed to use one A4 sheet with your personal notes (both sides, hand written or brinted). Exam duration: 90 minutes
Signa	ature

Exercise	1	2	3	4	5	6	7	8	9	10	Sum
Total points	1	1	1	1	1	1	1	1	1	1	10
Points reached											

Exercise 1 - Slotted Page.

1 Point

We want to store tuples inside the following table:

```
CREATE TABLE books (
  bid INTEGER,
  btitle VARCHAR(20)
);
```

Storing an INTEGER requires 4 bytes. Storing strings as a VARCHAR requires one byte for each character and an additional byte for termination. As an example, the string DBMS requires 5 bytes.

The tupes are stored inside a slotted page with the following properties:

- Size: $2^{13} = 8192$ bytes
- Addressing mode: Byte addressing (individual bytes can be addressed)

The following operations are performed in that order:

```
INSERT INTO books VALUES (42, 'Categoriae'); - Tuple A
INSERT INTO books VALUES (13, 'Analytica-priora'); - Tuple B
INSERT INTO books VALUES (37, 'De-sophisticis-elenchis'); - Tuple C
```

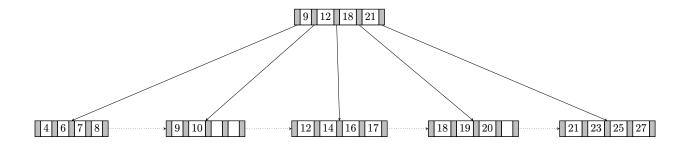
Fill in the missing values/addresses of the slotted page. Numerical values are expected, using arrows as pointers does not suffice. p_i and g_i correspond to the tuple d_i .

a	f	g_1	p_1	g_2	p_2	g_3	p_3	•••	d_3	d_2	d_1
									C	B	A

Name: Student ID: 3/11

Exercise 2 - Static Hashing.

1 Point


Construct a hash index based on attribute $Account\ Nr$ in the following table. The hash value is **first digit** of the attribute value. Each bucket stores up to **3 tuples**. **Overflow chaining** is used to resolve bucket overflows. Note that a pointer to an overflow bucket needs one entry in the bucket. **Illustrate the resulting hash index**.

Owner Name	Account Nr	Balance
Donovan	579976	2.467
Kermit	585989	7.824
Solomon	489384	6.824
Gavin	579331	3.850
Kelly	630468	8.949
Angelica	676246	6.452
Fredericka	589374	8.888
Caesar	682535	2.776
Chanda	304225	2.014
Patricia	886712	7.726

Exercise 3 - B^+ -Tree Deletion.

1 Point

Given the following B⁺-tree with m=5. Draw the B⁺-tree after deleting the key 10.

Name: Student ID: 5/11

Exercise 4 - Indexes with Composite Search Keys.

1 Point

Consider a relation R[A, B, C, D] and the following four query predicates. State the order of the attributes of (up to) two ordered composite indexes that allow computing all four queries efficiently using those indexes.

- 1. WHERE B = 42 AND C < 100
- 2. WHERE A < 50 AND B = 84
- 3. WHERE B=42 AND C<100 AND A=100
- 4. WHERE C = 100 AND D > 50 AND B = 42

${\sf Exercise}\ 5\ -\ {\it External}\ {\it Merge}\ {\it Sort}.$

1 Point

Conduct external merge sort on the given relation R[A]. A block can hold 2 tuples, the memory buffer can hold up to 4 blocks.

Name: Student ID: 7/11

Exercise 6 - Join Algorithms.

1 Point

Which join algorithm (Hash Join, Index Nested Loop Join) provides the minimal costs in the given scenario? State the costs for both algorithms.

Compute the **natural join** between relations R[A,B] and S[B,C] with |R|=1000 and |S|=12000 tuples. The relations are stored on $b_R=250$ and $b_S=2000$ consecutive blocks. The buffer fits M=21 blocks. There is a **sparse** B⁺-tree index on S.B, where each node in the B⁺-tree can store up to 20 search keys. The B⁺-tree index has maximum height.

Exercise 7 - Efficient Query Processing.

1 Point

Consider a relation R[A, B]. There is a sparse \mathbf{B}^+ -tree index on attribute R.A and a dense hash index on attribute R.B. Values of attribute B are unique. What is the most efficient strategy for processing queries of the following type?

$$\sigma_{A < a \ \lor \ B = b}(R)$$

Describe all necessary steps.

Name: Student ID: 9/11

Exercise 8 - Query Optimization.

1 Point

Consider the following relations:

```
(B)oats(bid, name, color)
(S)ailors(sid, name, rating, age)
(R)eservations(bid, sid, day)
```

Furthermore, consider the following SQL query:

```
SELECT DISTINCT B.name
FROM Boats B, Sailors S, Reservations R
WHERE S.age < 40
AND B.color = 'blue'
AND B.bid = R.bid
AND S.sid = R.sid;
```

- a. Write the given SQL query in algebraic normal form using an operator tree.
- b. Optimize the operator tree using heuristic optimization.

Exercis	se 9				1 Point
$\operatorname{Conside}$	er the followi	ng schedule	S:		
T1:	T2:	Т3:	T4:		
		write(I))	_	
	read(A)			_	
		write(A	1)	_	
vrite(A)			_	
	write(E	3)		_	
	read(C)			_	
		read(C))	_	
	commit			_	
		read(D)) 	_	
		commit		_	
			read(A)	_	
commit				_	
			read(B)	_	
			commit	_	
		_	$options wheth \ points being de$	er it is true (\mathbf{T}) or false (\mathbf{F}) . ducted.	
1. T	here is only of	one equivale	nt serial sched	\mathbf{s} ale to S .	
2. T	he precedenc	e graph of S	S has six edges.		
3. S	is a recovera	ble schedule	2.		
4. S	is a cascadel	ess schedule).		

Name: Student ID: 11/11

Exercise 10 1 Point

Can the following schedule be the output of a **strict two-phase locking** scheduler? If yes, add all required lock/unlock instructions. Otherwise, explain why.

T1:	T2:	Т3:
	read(A)	
	read(B)	
		read(A)
		write(A)
	write(B)	
	COMMIT	
		read(A)
		read(B)
read(B)		
read(A)		
		COMMIT
COMMIT		