
DEPARTMENT OF COMPUTER SCIENCE
Prof. Dr. Nikolaus Augsten
Jakob-Haringer-Str. 2
5020 Salzburg, Austria
Phone: +43 662 8044 6347
E-Mail: nikolaus.augsten@plus.ac.at

Databases II Exam
Winter Semester 2024/25 16.09.2025

Name: Student ID:

Hints

• Check whether you received all pages of the exam (11 pages).

• Write your name or your student ID on each sheet of the exam and hand in all pages.

• All answers are expected to be written on the exam sheets.

• Clearly highlight and enumerate additional pages that are used for longer answers. Match your
text with the according exercise.

• Only use pencils that are permanent and non-red colored.

• Use the notation and techniques discussed in the lecture.

• Exercises with more than one solution are not graded.

• Multiple-Choice: Wrong answers result in point deductions!

• You are allowed to use one A4 sheet with your personal notes (both sides, hand written or
printed).

• Exam duration: 90 minutes

Signature

Grading Filled by the examiner

Exercise 1 2 3 4 5 6 7 8 9 10 Sum
Total points 1 1 1 1 1 1 1 1 1 1 10
Points reached

2/11

Exercise 1 - Slotted Page. 1 Point

Consider a slotted page with the following properties:

• Size: 216 bytes

• Header: densely packed

• Addressing mode: Byte addressing (individual bytes can be addressed)

Compute the size of each field in the header (𝑎, 𝑓, 𝑔𝑖, and 𝑝𝑖). Furthermore,
compute the maximum number of tuples of size 25 bytes that can be stored
on a slotted page.

Name: Student ID: 3/11

Exercise 2 - Extendible Hashing. 1 Point

The hash function ℎ(𝑥) returns the binary values as shown in the table. Fill in the
missing values and components (global/local depth, pointer).

Hash table:

x ℎ(𝑥)
6 1100
13 1011
20 1000
21 1010
23 1110
28 1001
33 0010
34 0110

000
001
010
011
100
101
110
111

33
34

20
28

13
21

6
23

4/11

Exercise 3 - B+-Tree Deletion. 1 Point

Consider the relation 𝑅[𝑖𝑑, 𝑛𝑎𝑚𝑒] and the following B+-tree index built on attribute
𝑛𝑎𝑚𝑒 with 𝑚 = 3. Draw the B+-tree after performing the given SQL query. Perform
only as many index updates as required.

delete from R where name = ’Richard’

Karen

Henry Juliet

Burton Carlton Henry Juliet

Richard

Karen Shawn Woodrow

Name: Student ID: 5/11

Exercise 4 - Index Structures. 1 Point

For the given table, draw a 3-level secondary ISAM index on attribute Stadt. The
inner level of the index should be dense while both outer levels should be sparse.
An index block stores 3 entries.

Stadt KFZ
Rom I
London GBM
Prag CZ
Kiew UA
Berlin D
Athen GR
Krakau PL
Oslo N
Dublin IRL
Wien A

6/11

Exercise 5 - External Merge Sort. 1 Point

Consider the relation 𝑅[𝐴] with |𝑅| = 2000. A block can hold 2 tuples. The size of
the buffer consists of 10 blocks.

How many blocks must be read/written such that an external merge sort on relation
𝑅 can be performed? Do not count the final write step, which writes the result back
to disk.

Name: Student ID: 7/11

Exercise 6 - Join Algorithms. 1 Point

Given two relations 𝑅 and 𝑆 with the following properties:

𝑅[𝐴,𝐵,𝐶]:
- |𝑅| = 107 tuples stored on 𝑏𝑅 = 20 ⋅ 103 blocks
- dense B+-tree index on attribute 𝐴, 𝑚 = 28
- sparse B+-tree index on attribute 𝐵, 𝑚 = 27
- all B+-trees have maximal height

𝑆[𝐵,𝐷, 𝐹]:
- |𝑆| = 5 ⋅ 106 tuples stored on 𝑏𝑆 = 4 ⋅ 103 blocks
- single-level dense index (ISAM) on attribute 𝐵 with 5 ⋅ 104 blocks
- single-level sparse index (ISAM) on attribute 𝐷 with 40 blocks

Compute the natural join 𝑅 ⋈ 𝑆 based on an index nested loop join.

Compute the most efficient join order (𝑅 ⋈ 𝑆 or 𝑆 ⋈ 𝑅) and the according costs
(number of block accesses). Accessing one node of the B+-tree is equivalent to one
block access. Duplicates do not have to be considered.

8/11

Exercise 7 - Efficient Query Processing. 1 Point

Consider a relation 𝑅[𝐴,𝐵]. There is a sparse B+-tree index on attribute 𝑅.𝐴 and
a dense hash index on attribute 𝑅.𝐵. Values of attribute 𝐵 are unique. What is
the most efficient strategy for processing queries of the following type?

𝜎𝐴<𝑎 ∨ 𝐵=𝑏(𝑅)

Describe all necessary steps.

Name: Student ID: 9/11

Exercise 8 - Query Optimization and Join Ordering. 1 Point

Consider the following 3 relations 𝑅[𝐴,𝐵,𝐶], 𝑆[𝐴,𝐷,𝐸], 𝑇 [𝐴, 𝐹 ,𝐺] and their proper-
ties:

• |𝑅| = 1.200 tuples, 𝑉 (𝑅,𝐴) = 50, 𝑉 (𝑅,𝐵) = 100, 𝑉 (𝑅,𝐶) = 200

• |𝑆| = 3.000 tuples, 𝑉 (𝑆,𝐴) = 20, 𝑉 (𝑆,𝐷) = 1.000, 𝑉 (𝑆,𝐸) = 600

• |𝑇 | = 5.000 tuples, 𝑉 (𝑇 ,𝐴) = 100, 𝑉 (𝑇 , 𝐹) = 1.200, 𝑉 (𝑇 ,𝐺) = 1.800

Furthermore, consider the following SQL query:

select distinct R.A, S.D, T.G
from R, S, T
where R.A = S.A

and R.A = T.A

a. Write the given SQL query in algebraic normal form using an operator
tree.

b. Optimize the operator tree using heuristic optimization. The join order in
your operator tree should be optimal (i.e., the join with the smallest intermediate
result should be computed first).

10/11

Exercise 9 1 Point

Is the following schedule conflict serializable? Draw a precedence graph to verify.
If it is not, explain why. If it is, give an equivalent serial schedule.

T1: T2: T3:
write(C)
read(A)

write(C)
read(B)

write(A)
read(B)

read(A)
write(B)
read(C)

write(B)
read(A)

Name: Student ID: 11/11

Exercise 10 1 Point

Can the following schedule be the output of a two-phase locking scheduler? If so,
show the schedule with all required lock and unlock instructions. Otherwise explain
why. Could it be the output of a strict two-phase locking scheduler? Why (not)?

T1: T2: T3:
───────────────────────────────
read(A)
───────────────────────────────
write(A)
───────────────────────────────

read(B)
───────────────────────────────

write(C)
───────────────────────────────

read(A)
───────────────────────────────

COMMIT
───────────────────────────────

read(C)
───────────────────────────────

write(C)
───────────────────────────────

COMMIT
───────────────────────────────
read(B)
───────────────────────────────
COMMIT
───────────────────────────────

