FACHBEREICH INFORMATIK

Prof. Dr. Nikolaus Augsten

Jakob-Haringer-Str. 2 5020 Salzburg, Austria Telefon: +43 662 8044 6347 E-Mail: nikolaus.augsten@plus.ac.at

Datenbanken II Wintersemester 2024/25 Prüfung 29.01.2025

Name:	Matrikelnummer:	
Hinweise		

- Bitte überprüfen Sie die Vollständigkeit des Prüfungsbogens (11 nummerierte Seiten).
- Schreiben Sie Ihren Namen und Ihre Matrikelnummer auf jedes Blatt des Prüfungsbogens und geben Sie alle Blätter ab.
- Grundsätzlich sollten Sie alle Antworten auf den Prüfungsbogen schreiben.
- Sollten Sie mehr Platz für eine Antwort benötigen, bitte einen klaren Verweis neben die Frage auf die Seitennummer des zusätzlichen Blattes setzen.
- Keinen Bleistift verwenden. Keinen roten Stift verwenden.
- Verwenden Sie die Notation und die Lösungsansätze, die während der Vorlesung besprochen wurden.
- Aufgaben mit mehr als einer Lösung werden nicht bewertet.
- Als Unterlage ist ein beliebig (auch beidseitig) beschriftetes A4-Blatt erlaubt.
- Zeit für die Prüfung: 90 Minuten

Unterschrift	
Korrekturahschnitt	Ritte frei lassen

Aufgabe	1	2	3	4	5	6	7	8	9	10	Summe
Maximale Punkte	1	1	1	1	1	1	1	1	1	1	10
Erreichte Punkte											

Aufgabe 1 - Slotted Page.

1 Punkt

Gegeben sei eine Slotted Page mit folgenden Eigenschaften:

- Größe: $2^{13} = 8192$ Bytes
- Adressierungstyp: Word-Adressierung (es kann nur jedes 2. Byte adressiert werden)

In dieser Slotted Page werden die Tupel O, P, Q gespeichert:

- d_1 : |O| = 64 Bytes
- d_2 : |P| = 127 Bytes
- d_3 : |Q| = 255 Bytes

Ergänzen Sie die Slotted Page um die fehlenden Werte/Adressen (numerische Werte erwartet, Pfeile reichen nicht aus), wobei p_i und g_i sich auf den jeweiligen Datensatz d_i beziehen.

a	f	g_1	p_1	g_2	p_2	g_3	p_3	 d_3	d_2	d_1	
								Q	P	О]

Aufgabe 2 - Indexstrukturen.

1 Punkt

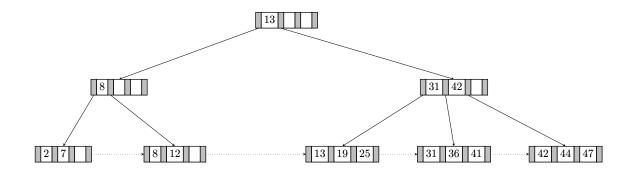
Zeichnen Sie für die folgende Tabelle einen 3-stufigen Sekundärindex auf dem Attribut Stadt. Die innere Indexstufe soll dense und die äußeren beiden Indexstufen sollen sparse sein. In einen Indexblock können 3 Einträge gespeichert werden.

Stadt	KFZ
Rom	Ι
London	GBM
Prag	CZ
Kiew	UA
Berlin	D
Athen	GR
Krakau	PL
Oslo	N
Dublin	IRL
Wien	A

Aufgabe 3 - Statisches Hashing.

1 Punkt

Auf der folgenden Tabelle soll ein **Hash Index** konstruiert werden. Als Schlüssel wird das Attribut *Account Nr* verwendet. Der Hashwert ist die **erste Ziffer** des Attributwerts mod 5. Es gibt **5 Buckets** und es können **3 Tupel pro Bucket** gespeichert werden. Bucket Overflows werden durch **Overflow Chaining** aufgelöst, wobei ein Zeiger auf ein Overflow Bucket einen Eintrag im Bucket benötigt. **Illustrieren** Sie den **Hash Index**.


Owner Name	Account Nr	Balance
Donovan	579976	2.467
Kermit	585989	7.824
Solomon	489384	6.824
Gavin	579331	3.850
Kelly	630468	8.949
Angelica	676246	6.452
Fredericka	589374	8.888
Caesar	682535	2.776
Chanda	304225	2.014
Patricia	886712	7.726

Name: Matrikelnummer: 5/11

Aufgabe 4 - B^+ -Baum Löschen.

1 Punkt

Gegeben ist ein B⁺-Baum mit m=4. Zeichnen Sie den B⁺-Baum, der nach dem Löschen von 8 entsteht.

Aufgabe 5 - Externes Merge-Sort.

1 Punkt

Führen Sie externes Merge-Sort auf der folgenden Relation R[A] aus. Jeder Block fasst 2 Tupel. Die Größe des Puffer beträgt 3 Blöcke.

Name: Matrikelnummer: 7/11

Aufgabe 6 - Join-Algorithmen.

1 Punkt

Gegeben seien **zwei Relationen** R and S mit folgenden Eigenschaften:

R[A, B, C]:

- $|R|=10^7$ Tupel, gespeichert auf $b_R=20\cdot 10^3$ Datenblöcken
- dense B⁺-Baum-Index auf Attribut $A, m = 2^8$
- sparse B⁺-Baum-Index auf Attribut $B, m = 2^7$
- Die B⁺-Bäume besitzen **maximale Höhe**.

S[B, D, F]:

- $|S| = 5 \cdot 10^6$ Tupel, gespeichert auf $b_S = 4 \cdot 10^3$ Datenblöcken
- einstufiger dense Index (ISAM) auf Attribut B mit $5 \cdot 10^4$ Indexblöcken
- einstufiger sparse Index (ISAM) auf Attribut D mit 40 Indexblöcken

Es soll ein natürlicher Join $R \bowtie S$ mithilfe des Index Nested Loop Joins durchgeführt werden.

Geben Sie hierfür die effizienteste Join-Reihenfolge ($R \bowtie S$ oder $S \bowtie R$) sowie die zugehörigen **Kosten** (in Blockzugriffen) an. Ein Knotenzugriff im B⁺-Baum entspricht einem Blockzugriff. Duplikate können für diese Aufgabe vernachlässigt werden.

Aufgabe 7 - Effiziente Anfragebearbeitung.

1 Punkt

Gegeben sei eine Relation R[A, B, C] mit folgenden Eigenschaften:

- |R| = 2.000.000 Tupel.
- Pro Datenblock werden 400 Tupel gespeichert.
- Attribut A hat ganzzahlige Werte gleichverteilt im Bereich [1; 2.000.000].
- Attribut B hat ganzzahlige Werte gleichverteilt im Bereich [400.001; 500.000].
- Attribut C hat ganzzahlige Werte gleichverteilt im Bereich [100.001; 1.000.000].
- Es existieren folgende Indizes:
 - Sparse B⁺-Baum-Index auf Attribut A, $m=2^8=256$, minimale Höhe,
 - dense B⁺-Baum-Index auf Attribut $B, m = 2^8 = 256$, minimale Höhe,
 - dense B⁺-Baum-Index auf Attribut $C, m = 2^8 = 256$, minimale Höhe.

Es soll folgende Anfrage beantwortet werden:

$$\sigma_{A>1.800.000 \wedge B=450.000}(R)$$

Geben Sie die Strategie (0.5 Punkte) an und berechnen Sie die Anzahl der Blockzugriffe (0.5 Punkte) um die Anfrage möglichst effizient zu beantworten (1 Knotenzugriff im B⁺-Baum entspricht 1 Blockzugriff).

Name: Matrikelnummer: 9/11

Aufgabe 8 - Anfrageoptimierung.

1 Punkt

Betrachte die folgenden Relationen:

```
(B)oats(bid, name, color)
(S)ailors(sid, name, rating, age)
(R)eservations(bid, sid, day)
```

Weiters sei die folgende SQL-Anfrage gegeben:

```
SELECT DISTINCT B.name
FROM Boats B, Sailors S, Reservations R
WHERE S.age < 40
AND B.color = 'blue'
AND B.bid = R.bid
AND S.sid = R.sid;
```

- a. Zeichnen Sie die algebraische Normalform als Operatorbaum für die gegebene SQL-Anfrage. (0.5 Punkte)
- b. Wenden Sie heuristische Optimierung an, um den Operatorbaum zu optimieren. (0.5 Punkte)

Aufgabe 9 1 Punkt

Geben Sie eine Historie (Schedule) von zumindest zwei Transaktionen an, die konfliktserialisierbar, aber nicht rücksetzbar (recoverable) ist. Beschreiben Sie, wie Ihre Historie zu einem inkonsistenten Datenbankzustand führen kann.

Name:	Matrikelnummer:	11/11

Aufgabe 10 1 Punkt

Betrachten Sie folgende Schedule und Two-Phase-Locking.

- (a) Nach der read Operation von T3 wollen alle Transaktionen eine write Operation auf Element A in folgender Reihenfolge durchführen: T1, T2, T3. Vervollständigen Sie die Schedule, indem Sie Lock-Anfragen (request; z.B. R:lock-S(A)) und erteilte Locks (granted; z.B. G:lock-S(A)) für alle verbleibenden read und write Operationen einfügen. Kennzeichnen Sie in der Schedule, wenn eine Transaktion warten muss.
- (b) Zeichnen Sie den Wait-for Graph. Führt die Schedule zu einem Deadlock?

T1:	T2:	Т3:
R:lock- G:lock- read(A)		
		read(A)