Similarity Search
The String Edit Distance

Augsten (Univ. Salzburg)

Nikolaus Augsten

nikolaus.augsten@plus.ac.at
Department of Computer Science
University of Salzburg

[XI database
research group

https://dbresearch.uni-salzburg.at

WS 2025/26
Version November 6, 2025

Similarity Search

WS 202526

Outline

@ String Edit Distance
@ Motivation and Definition
@ Brute Force Algorithm
@ Dynamic Programming Algorithm
@ Edit Distance Variants

© Conclusion

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Motivation and Definition

Outline

@ String Edit Distance
@ Motivation and Definition

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Motivation and Definition

Motivation

@ How different are

@ hello and hello?
@ hello and hallo?
e hello and hell?

@ hello and shell?

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Motivation and Definition

What is a String Distance Function?

Definition (String Distance Function)

Given a finite alphabet X, a string distance function, ds, maps each pair of
strings (x,y) € £* X £* to a positive real number (including zero).

0s 1 T X T* = RS

@ X ™ is the set of all strings over X, including the empty string .

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Motivation and Definition

The String Edit Distance

Definition (String Edit Distance)

The string edit distance between two strings, ed(x, y), is the minimum
number of character insertions, deletions and replacements that transforms

X to y.

y

@ Example:
e hello—hallo: replace e by a
e hello—hell: delete o

@ hello—shell: delete o, insert s

@ Also called Levenshtein distance.l

'Levenshtein introduced this distance for signal processing in 1965 [Lev65].

Similarity Search WS 2025/26

Augsten (Univ. Salzburg)

String Edit Distance Brute Force Algorithm

Outline

@ String Edit Distance

@ Brute Force Algorithm

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Brute Force Algorithm

Gap Representation

@ Gap representation of the string transformation x — y:
Place string x above string y

e with a gap in x for every insertion,
e with a gap in y for every deletion,
e with different characters in x and y for every replacement.

@ Any sequence of edit operations can be represented with gaps.

@ Example:
hallo
shell

@ Insert s
e replace a by e
e delete o

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Brute Force Algorithm

Deriving the Recursive Formula: Optimal Substructure

@ Recursive solution: is applicable only to problems with optimal
substructure property.
@ Optimal substructure property of a problem:

e optimal solution to larger problem computable from the optimal
solutions of subproblems

@ Examples:

e Shortest path has optimal substructure: If a is on shortest path P from
a to b = the section a — c on P is the shortest path between a and c.

o Longest simple® path does not have optimal substructure. Counter
example [CLRS09]: Consider longest path ¢ — t and subpath g — r.

2

I.e., the path has no cycles
Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Brute Force Algorithm

Deriving the Recursive Formula: Optimal Substructure

Lemma (Optimal Substructure of String Edit Distance Problem)

Given a gap representation, gap(x, y), between two strings x and y, such
that the cost of gap(x, y) is the string edit distance ed(x, y).

If we remove the last column of gap(x, y), then the gap representation of
the remaining columns, gap(x’,y’), has cost ed(x’,y’) between the
resulting substrings, x' and y’.

halllo
s helll

@ Example:

o x =hallo, y = shell, cost(gap(x,y)) =ed(x,y) =3
o x' =hall, y = shell, cost(gap(x’,y’)) = ed(x’,y’) =2

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Brute Force Algorithm

Deriving the Recursive Formula: Optimal Substructure

Proof: Optimal Substructure String Edit Distance (by contradiction).

@ Last column contributes with ¢ = 0 or ¢ = 1 to cost of gap(x, y), thus:
cost(gap(x, y)) = cost(gap(x’,y')) + ¢

@ Assume gap(x’,y’) is not optimal, i.e., cost(gap(x’,y’)) > ed(x’,y’). Let
gap*(x’, y’) be the respective gap representation:

cost(gap*(x’,y")) = ed(x’, y") < cost(gap(x’,y"))

@ By extending gap*(x’, y’) with the last column, we get a gap representation
gap*(x, y) with cost below ed(x, y), which contradicts the definition of the
edit distance.

cost(gap*(x,y)) = cost(gap*(x',y’'))+c
< cost(gap(x’,y’)) + c = ed(x, y)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Brute Force Algorithm

Deriving the Recursive Formula

@ Example:
hallo
s hell
@ Notation:

o x[1...i] is the substring of the first i characters of x (x[1...0] =
o x[i] is the i-th character of x

@ Recursive Formula:

ed(e,e) = 0
ed(x[1l..i],e]) = i
ed(e, y[1.4]) = J
ed(x[1..i],¥[1.J]) = min(ed(x[1..i —1],y[1.j —1]) +c,
ed(x[1..;i — 1], y[1.J]) + 1,
ed(x[1..i],y[1.7 —1]) + 1)

where ¢ = 0 if x[i] = y[j], otherwise ¢ = 1.

)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Brute Force Algorithm

Brute Force Algorithm

m = |x|, n=ly|

if m =0 then return n

if n =0 then return m

if xm| = y[n] then c=0else c =1

return min(ed-bf(x,y[l...n—1]) + 1,
ed-bf(x[1...m—1],y) + 1,
ed-bf(x[1...m—1],y[1...n—1]) + ¢)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Brute Force Algorithm

Brute Force Algorithm

@ Recursion tree for ed-bf(ab, xb):

ab,e a,g
ab,x a,Xx €,X
\
a,e £,
a,e
/
a,x g,X
/ \
ab,xb a,xb e, xb E€,€
£,X
a,e
/
a,x £,X
\
€,

@ Exponential runtime in string length :-(

@ Observation: Subproblems are computed repeatedly
(e.g. ed-bf(a,x) is computed 3 times)

@ Approach: Reuse previously computed results!

Augsten (Univ. Salzburg) Similarity Search

WS 2025/26

String Edit Distance Dynamic Programming Algorithm

Outline

@ String Edit Distance

@ Dynamic Programming Algorithm

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Dynamic Programming Algorithm

Dynamic Programming Algorithm — Top Down

@ Store distances between all prefixes of x and y
@ Use matrix Cp. m,0..n With
Gj=-ed(x[1...i],y[1...]])
where x[1..0] = y[1..0] = €.
@ Example:
ab,e a,g
— /
ab,x a,X g,X
\ \
4,8 £,
a,&
e x b —
a,x £,X
0 1 2 ab,xb a,xb /5,xb\ €,€
a|l 1 2 —
b2 2 1 |
a,&
/
a,x £,X
\
£,€

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Dynamic Programming Algorithm

Dynamic Programming Algorithm — Bottom Up

C : array[0..|x]|][0..]y|]
for i =0 to |x| do C[i,0] =i
for j=1to |y| do C[0,j] =
for j =1to |y| do
for i =1 to |x| do
if x[i] =y[j]thenc=0else c=1

Cli,j]=min(C[i - 1,j — 1] +c,
Cli—1,j]+1,
Cli,j—1]+1)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Dynamic Programming Algorithm

Dynamic Programming Algorithm — Properties

@ Complexity:

o O(mn) time (nested for-loop)

o O(mn) space (the (m+1)x(n+1)-matrix C)
@ Improving space complexity (assume m < n):

e we need only the previous column to compute the next column
e we can forget all other columns
o = O(m) space complexity

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Dynamic Programming Algorithm

Understanding the Solution

ins —

@ Example: en N, | e m o n d
€ O «1+«2«3 4

X = moon
y = mond del m 1 0+1+2+3
4 o 2 1 0+1<+2
o 3 2 1 1+2
n 4 3 2 12

@ Each arrow represents an edit operation with minimal cost

@ Cost 2 in cell (n, d) can either result from replacing n by d (diagonal
arrow) or by inserting d (horizontal arrow)

@ Each path from bottom right to top left corner represents a valid set
of edit operations

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Dynamic Programming Algorithm

Understanding the Solution

@ Example:
moon
ins —

mond

e m o n d

€ 0 1 2 3 4
X = moon N moon

y = mond del] m |1 0 1 2 3

l\ m ond

o 2 o 1 2

o 3 2\]\\1 2
moon

n 4 3 2\152

m o nd

@ Solution 1: replace n by d and (second) o by n in x
@ Solution 2: insert d after n and delete (first) o in x

@ Solution 3: insert d after n and delete (second) o in x

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Dynamic Programming Algorithm

Dynamic Programming Algorithm

ed-dyn™(x, y)

coly : array|0..|x|]
coly : array|0..|x|]
for i =0 to |x| do col[i] =i
for j=1to |y| do
coh[0] =
for i =1 to |x| do
if x[i] =y[j]thenc=0else c=1
coli[i] = min(colp|[i — 1] + ¢,
coh[i — 1] + 1,
colp[i] + 1)

colp = coh

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Edit Distance Variants

Outline

@ String Edit Distance

@ Edit Distance Variants

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Edit Distance Variants

Distance Metric

Definition (Distance Metric)
A distance function 90 is a distance metric if and only if for any x, y, z the

following hold:
@ i(x,y) =0« x =y (identity)
@ i(x,y) =46(y,x) (symmetric)
@ 6(x,y)+6(y,z) > d(x, z) (triangle inequality))

Examples:
@ the Euclidean distance is a metric

@ d(a,b) = a— b is not a metric (not symmetric)

WS 2025/26

Augsten (Univ. Salzburg) Similarity Search

String Edit Distance Edit Distance Variants

Introducing Weights

@ Look at the edit operations as a set of rules with a cost:

ale,b) = Wins (insert)
ala,e) = wyel (delete)
Wrep 1fa#b
a,b) = P replace
o2, b) 0 ifa=0>b (replace)

where a,b € 2, and wins, Wdel, Wrep € Rar.
@ Edit script: sequence of rules that transform x to y

@ Edit distance: edit script with minimum cost
(adding up costs of single rules)

@ Example: so far we assumed wjps = Wyel = Wrep = 1.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Edit Distance Variants

Weighted Edit Distance

@ Recursive formula with weights:

0

min(C,-_l,j_l + ()C(X[i]a)/U])?
Ci—1j + a(x[i],),
Cij—1+ale,ylj]))

where a(a,a) =0forallae X, and C_; ;= (1 = .

Co0
Cij

@ We can easily adapt the dynamic programming algorithm.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Edit Distance Variants

Variants of the Edit Distance

@ Unit cost edit distance (what we did so far):
@ Wins = Wdel = Wrep = 1
o 0 < ed(x,y) < max(|x|, |y])
e distance metric

@ Hamming distance [Ham50, SK83|:

o called also “string matching with k mismatches”
e allows only replacements

@ Wrep — 1, Wins = Wdel = 0

o 0 <d(x,y) < |x|if |x| = |y|, otherwise d(x,y) = o0
e distance metric

@ Longest Common Subsequence (LCS) distance [NW70, AG87]:

e allows only insertions and deletions
@ Wins = Weel = 1, Wrep = OO

o 0<d(x,y) < Ix|+ 1yl

e distance metric

o LCS(x,y) = (x| + |y] —d(x,y))/2

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Edit Distance Variants

Allowing Transposition

@ Transpositions
e switch two adjacent characters
e can be simulated by delete and insert
e typos are often transpositions

@ New rule for transposition
Oé(ab, ba) — Wtrans

allows us to assign a weight different from wjns + Wyes
@ Recursive formula that includes transposition:

C(),() = 0
Cij = min(Ci1j1+ a(x{i], ylj]),
Ci—1,j + a(x]i],),
Cij—1+ ale, yli),
Ci2j—2 + alx[i = 1x[i], y[j — 1]y[j]))
where a(ab,cd) = oo if az dor b=# ¢, a(a,a) =0 forall a e ¥,
and C_1’j = C,'7_1 = C_QJ = C,'7_2 = OQ.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Edit Distance Variants

Example: Edit Distance with Transposition

@ Example: Compute distance between x =meal and y =mael using
the edit distance with transposition (wins = Wdel = Wrep = Wtrans = 1)

@ The value in red results from the transposition of ea to ae.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance Edit Distance Variants

Text Searching

@ Goal:

o search pattern p in text t (|p| < |t])
e allow k errors
e match may start at any position of the text

@ Difference to distance computation:

o (p,; =0 (instead of Cpj = j, as text may start at any position)
o result: all Gy, ; < k are endpoints of matches

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

String Edit Distance

Example: Text Searching

Edit Distance Variants

@ Example:
£ S u r g e r y
c/0 0 0 0 0 0 0 0
s|1 0 1 1 1 1 1 1
’z - zi":}r’ ul2 1.0 1 2 2 2 2
&Y v 13 2 1.0 1 2 2 3
ko= 2 vi4a 3 2 11 2 3 3
e|l5 4 3 2 2 1 2 3
y|6 5 4 3 3 2 2 2

@ Solutions: 3 matching positions with k < 2 found.

Vey
g e

Augsten (Univ. Salzburg)

Similarity Search

WS 2025/26

Conclusion

Summary

e Edit distance between two strings: the minimum number of edit
operations that transforms one string into the another

@ Dynamic programming algorithm with O(mn) time and O(m) space
complexity, where m < n are the string lengths.

@ Basic algorithm can easily be extended in order to:

e weight edit operations differently,

@ support transposition,

e simulate Hamming distance and LCS,
e search pattern in text with k errors.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

4 Alberto Apostolico and Zvi Galill.
The longest common subsequence problem revisited.
Algorithmica, 2(1):315-336, March 1987.

@ Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein.
Introduction to Algorithms, 3rd Edition.
MIT Press, 2009.

4 Richard W. Hamming.
Error detecting and error correcting codes.
Bell System Technical Journal, 26(2):147-160, 1950.

% Vladimir |. Levenshtein.

Binary codes capable of correcting spurious insertions and deletions of
ones.

Problems of Information Transmission, 1:8—17, 1965.

% Saul B. Needleman and Christian D. Wunsch.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

A general method applicable to the search for similarities in the amino
acid sequence of two proteins.

Journal of Molecular Biology, 48:443—-453, 1970.

5] David Sankoff and Josef B. Kruskal, editors.
Time Warps, String Edits, and Macromolecules: The Theory and

Practice of Sequence Comparison.
Addison-Wesley, Reading, MA, 1983.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

