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Tree Edit Distance Preliminaries and Definition

Edit Operations

We assume ordered, labeled trees

Rename node: ren(v, l ′)
change label l of v to l ′ ̸= l

Delete node: del(v) (v is not the root node)

remove v
connect v’s children directly to v’s parent node (preserving order)

Insert node: ins(v, p, k,m)

remove m consecutive children of p, starting with the child at position
k , i.e., the children ck , ck+1, . . . , ck+m−1

insert ck , ck+1, . . . , ck+m−1 as children of the new node v
(preserving order)
insert new node v as k-th child of p

Insert and delete are inverse edit operations
(i.e., insert undoes delete and vice versa)
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Tree Edit Distance Preliminaries and Definition

Example: Edit Operations

T0

v1,a

v3,c v4,c v7,d

ins((v5,b),v1,2,2)

T1

v1,a

v3,c v5,b

v4,c v7,d

ren(v4,x)

T2

v1,a

v3,c v5,b

v4,x v7,d

ren(v4,c)del(v5)
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Tree Edit Distance Preliminaries and Definition

Edit Cost Function

Represent edit operation as node pair (a, b) ̸= (ε, ε)
(written also as a→ b, ε is the null node)

a→ ε: delete a
ε→ b: insert b
a→ b: rename a to b

Cost function α(a→ b):

assign to each edit operation a non-negative real
cost can be different for different nodes
we use constant costs ωins , ωdel , ωren

We constrain α to be a distance metric:

(i) triangle inequality: α(a→ b) + α(b→ c) ≥ α(a, c)
(ii) symmetry: α(a→ b) = α(b→ a)
(iii) identity: α(a→ b) = 0⇔ λ(a) = λ(b)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 6 / 64



Tree Edit Distance Preliminaries and Definition

Definition

Definition (Tree Edit Distance)

The tree edit distance between two trees is the minimum cost sequence of
node edit operations (node deletion, node insertion, node rename) that
transforms one tree into the other.

Cost of a sequence S = {s1, . . . , sn} of edit operations:

α(S) =
n∑

i=1

α(si )

As the cost function is a metric, also the tree edit distance is a metric.
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Tree Edit Distance Preliminaries and Definition

Postorder Traversal

Postorder traversal of an ordered tree:

traverse subtrees rooted in children of current node (from left to right)
in postorder
visit current node

Example: postorder = (f, e, d, c, b, a)
a6

d3

f 1 e2

c4 b5

Observations: The postorder number of a node v is larger than

the postorder numbers of all its descendants (excluding node v)
the postorder numbers of all its left siblings
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Tree Edit Distance Preliminaries and Definition

Subtrees and Subforests

A subtree T′ of T is a tree that consists of:

a subset of the nodes of T: N(T′) ⊆ N(T)
all edges in T that connect these nodes: E (T′) ⊆ E (T)}

Ordered Forests:

a forest is a set of trees
an ordered forest is a sequence of trees

Ordered Subforests of a tree T:

formed by subtrees of T with disjoined nodes
subtrees ordered by the postorder number in T of their root
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Tree Edit Distance Preliminaries and Definition

Example: Subtrees and Subforests

Example tree (postorder numbers are node IDs):
T = ({v1, v2, v3, v4, v5, v6}, {(v6, v4), (v6, v5), (v4, v1), (v4, v3), (v3, v2)})

f6

d4
a1 c3

b2

e5

Two subtrees of T:

T ′
1 = ({v3}, {}) T ′

2 = ({v4, v1, v3}, {(v4, v1), (v4, v3)})
c3 d4

a1 c3Ordered subforest of T:
F = (({v2}, {}), ({v4, v1, v3}, {(v4, v1), (v4, v3)}), ({v5}, {}))

d4

a1 c3

b2 e5

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 10 / 64



Tree Edit Distance Preliminaries and Definition

Notation I/II

We use the following notation:

T[i ] is the i-th node of T in postorder (we say: T[i ] is node i of T)
T[i ..j ] is the subforest formed by the nodes T[i ] to T[j ]
l(i) is the left-most leaf descendant of node T[i ]
desc(T[i ]) is the set of all descendants of T[i ] including T[i ] itself
(elements of desc(T[i ]) are usually denoted with di )

Node identifiers:

we assume that the node IDs correspond to their postorder number
we refer to a node simply by its ID, if the context is clear
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Tree Edit Distance Preliminaries and Definition

Notation II/II

T[l(i)..i ] is the subtree rooted in T[i ], i.e., the subtree consisting of
node i and all its descendants

A special subforests of the form

T[l(i)..di ], (di ∈ desc(T[i ]))

is a prefix of the subtree rooted in T[i ].

Observations:

If a node k is in T[l(i)..di ], also all its descendants are in T[l(i)..di ].
A (sub)tree with n nodes has n prefixes.
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Tree Edit Distance Preliminaries and Definition

Example: Subtrees and Subforests

Example tree:

f6

d4

a1 c3

b2

e5

Descendants: desc(T[4]) = {T[1],T[2],T[3],T[4]}
Left-most leaf descendants: l(1) = l(4) = l(6) = T[1]
Some ordered subforests of the form T[l(i)..di ], di ∈ desc(i):

T[l(4)..3] T[l(4)..4] T[l(6)..5] T[l(5)..5]

c3

b2

a1 d4

a1 c3

b2

d4

a1 c3

b2

e5 e5
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Tree Edit Distance Preliminaries and Definition

Edit Mapping

Definition (Edit Mapping)

An edit mapping M between T1 and T2 is a set of node pairs that satisfy
the following conditions:

(1) (a, b) ∈ M ⇒ a ∈ N(T1), b ∈ N(T2)

(2) for any two pairs (a, b) and (x, y) of M:

(i) a = x⇔ b = y (one-to-one condition)
(ii) a is to the left of x1 ⇔ b is to the left of y

(order condition)
(iii) a is an ancestor of x ⇔ b is an ancestor of y

(ancestor condition)

1i.e., a precedes x in both preorder and postorder
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Tree Edit Distance Preliminaries and Definition

Edit Mapping

The cost of the mapping is

α(M) =
∑

(a,b)∈M
α(a→ b) +

∑

a∈D
α(a→ ε) +

∑

b∈I
α(ε→ b),

where D resp. I are the nodes of T1 resp. T2 that are not in M.

Alternative definition of the tree edit distance ted(T1,T2):

ted(T1,T2) = min{α(M) | M is an edit mapping from T1 to T2}
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Tree Edit Distance Preliminaries and Definition

Example: Mapping

M = {(T1[6],T2[6]), (T1[5],T2[5]), (T1[4],T2[3]), (T1[1],T2[1]),
(T1[2],T2[2])}

T1[3] is deleted
T2[4] is inserted
no proper rename (only rename to the same label with cost 0)

T1 T2

f6

d4

a1 c3

b2

e5

f6

c4

d3

a1 b2

e5
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Tree Edit Distance Forests Distance and Recursive Formula

Forest Distance

Definition (Forest Distance)

The forest distance between two ordered forests is the minimum cost
sequence of node edit operations (node deletion, node insertion, node
rename) that transforms one forest into the other.

Edit mapping and edit operations in a forest:

Each tree in the forest has a root node.
We imagine a dummy node that is the parent of all these root nodes.
The sibling order in the imaginary tree is the tree order in the forest.
The dummy node connects the forest to become a tree.
Then all edit operations and edit mappings valid between two
imaginary trees are valid also between the respective forests.

The tree edit distance is a special case of the forest distance, where
the forest has the form T[l(i)..i ], i.e., it consists of a single tree.
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Tree Edit Distance Forests Distance and Recursive Formula

Recursive Formula: Distance to the Empty Forest

Lemma (Empty Forest [ZS89, AG97])

Given two trees T1 and T2, i ∈ N(T1) and di ∈ desc(i), j ∈ N(T2) and
dj ∈ desc(j), then:

(i) fdist(∅, ∅) = 0
(ii) fdist(T1[l(i)..di ], ∅) = fdist(T1[l(i)..di − 1], ∅) + ωdel

(iii) fdist(∅,T2[l(j)..dj ]) = fdist(∅,T2[l(j)..dj − 1]) + ωins

Proof.

Case (i) requires no edit operation. In cases (ii), the distance corresponds
to the cost of deleting all nodes in T1[l(i)..di ]. In cases (iii), the distance
corresponds to the cost of inserting all nodes in T2[l(j)..dj ].
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Tree Edit Distance Forests Distance and Recursive Formula

First Recursive Formula: Forest Distance

Lemma (First Recursive Formula)

Given two trees T1 and T2, i ∈ N(T1) and di ∈ desc(i), j ∈ N(T2) and
dj ∈ desc(j), then:

fdist(T1[l(i)..di ],T2[l(j)..dj ]) = min





fdist(T1[l(i)..di − 1],T2[l(j)..dj ]) + ωdel

fdist(T1[l(i)..di ],T2[l(j)..dj − 1]) + ωins

fdist(T1[l(i)..l(di )− 1],T2[l(j)..l(dj)− 1])

+ fdist(T1[l(di )..di − 1],T2[l(dj)..dj − 1])

+ωren
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Tree Edit Distance Forests Distance and Recursive Formula

Proof

Proof.

Let M be the minimum-cost map between T1[l(i)..di ] and T2[l(j)..dj ], i.e., the
map we are looking for. Then for T1[di ] and T2[dj ] there are three possibilities:

(1) T1[di ] is not touched by a line in M: T1[di ] is deleted and
fdist(T1[l(i)..di ],T2[l(j)..dj ]) = fdist(T1[l(i)..di − 1],T2[l(j)..dj ]) + ωdel

(2) T2[dj ] is not touched by a line in M: T2[dj ] is inserted and
fdist(T1[l(i)..di ],T2[l(j)..dj ]) = fdist(T1[l(i)..di ],T2[l(j)..dj − 1]) + ωins

(3) Both, T1[di ] and T2[dj ] are touched by a line in M: We show (by
contradiction) that in this case (T1[di ],T2[dj ]) ∈ M, i.e., T1[di ] is renamed
to T2[dj ]: Assume (T1[di ],T2[d

′
i ]) ∈ M and (T1[d

′
j ],T2[dj ]) ∈ M.

Case T1[di ] is to the right of T1[d
′
j ]: By sibling condition on M also

T2[d
′
i ] must be to the right of T2[dj ]. Impossible in T2[l(j)..dj ].

Case T1[di ] is proper ancestor of T1[d
′
j ]: By ancestor condition on M

also T2[d
′
i ] must be ancestor of T2[dj ]. Impossible in T2[l(j)..dj ].

As these three cases express all possible mappings yielding
fdist(T1[l(i)..di ],T2[l(j)..dj ]), we take the minimum of these tree costs.
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Tree Edit Distance Forests Distance and Recursive Formula

Example: First Recursive Formula (1/3)

T1 f6

d4

a1 c3

b2

e5

T2 f6

c4

d3

a1 b2

e5

T1[I (i)...di ] T2[I (j)...dj ]
(i=6, di=3) (j=6, dj=3)

(1) fdist(T1[l(i)..di − 1],T2[l(j)..dj ]) + ωdel

c3

b2

a1 d3

a1 b2

T1[I (i)...di − 1] T2[I (j)...dj ]

edit script: ins(d3), del(c3)
cost: 1 + 1 = 2
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Tree Edit Distance Forests Distance and Recursive Formula

Example: First Recursive Formula (2/3)

T1 f6

d4

a1 c3

b2

e5

T2 f6

c4

d3

a1 b2

e5

T1[I (i)...di ] T2[I (j)...dj ]
(i=6, di=3) (j=6, dj=3)

(2) fdist(T1[l(i)..di ],T2[l(j)..dj − 1]) + ωins

c3

b2

a1 d3

a1 b2

T1[I (i)...di − 1] T2[I (j)...dj ]

edit script: del(c3), ins(d3)
cost: 1 + 1 = 2
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Tree Edit Distance Forests Distance and Recursive Formula

Example: First Recursive Formula (3/3)

(3) fdist(T1[l(i)..l(di )− 1],T2[l(j)..l(dj)− 1])
+ fdist(T1[l(di )..di − 1],T2[l(dj)..dj − 1])
+ωren

a1 c3

b2

∅ d3

a1 b2

T1[l(i)..l(di )− 1] T1[l(di )..di − 1] T2[l(j)..l(dj )− 1] T2[l(dj )..dj − 1]

T1[l(i)..l(di )− 1]→ T2[l(j)..l(dj)− 1]: del(a1)
T1[l(di )..di − 1]→ T2[l(dj)..dj − 1]: ins(a1)
c3 → d3: ren(c3, d3)
cost: 1 + 1 + 1 = 3
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Tree Edit Distance Forests Distance and Recursive Formula

Analogy to the String Case

Why is the third formula not (in analogy to the string case):

fdist(T1[l(i)..di − 1],T2[l(j)..dj − 1]) + ωren

Consider the previous example:

a1 c3

b2

d3

a1 b2

T1[l(i)..di −1] T2[l(j)..dj−1]

ren(c3, d3) does not transform T1[l(i)..di ] to T2[l(j)..dj ]

In fact the mapping M = {(a1, a1), (b2, b2), (c3, d3)} is not valid:
Connect all trees in the forest with a dummy node (•):
As d3 is an ancestor of a1, c3 must be an ancestor of a1, which is false.

•
a1 c3

b2

•
d3

a1 b2
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Tree Edit Distance Second Recursive Formula

Observation

fdist(T1[l(i)..di ],T2[l(j)..dj ]) = min





fdist(T1[l(i)..di−1],T2[l(j)..dj ]) + ωdel

fdist(T1[l(i)..di ],T2[l(j)..dj−1]) + ωins

fdist(T1[l(i)..l(di )− 1],T2[l(j)..l(dj)− 1])

+ fdist(T1[l(di )..di−1],T2[l(dj)..dj−1])
+ωren

Observation about the First Recursive Formula:

fdist(T1[l(di )..di−1],T2[l(dj)..dj−1]) [D] compares prefixes of subtrees
rooted in di resp. dj
all other subforests are prefixes of subtrees rooted in i resp. j
[D] does not fit the scheme (bad for dynamic programming algorithm)

We derive the Second Recursive Formula:

we distinguish two cases (both forests are trees/one forest is not a tree)
in each case we replace term [D] by a new term that is easier to handle
in a dynamic programming algorithm
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Tree Edit Distance Second Recursive Formula

Second Recursive Formula: Forest Distance

Lemma (Second Recursive Formula)

Given two trees T1 and T2, i ∈ N(T1) and di ∈ desc(i), j ∈ N(T2) and
dj ∈ desc(j), then:

(1) If l(i) = l(di ) and l(j) = l(dj), i.e., both forests are trees:

fdist(T1[l(i)..di ],T2[l(j)..dj ]) = min





fdist(T1[l(i)..di − 1],T2[l(j)..dj ]) + ωdel

fdist(T1[l(i)..di ],T2[l(j)..dj − 1]) + ωins

fdist(T1[l(i)..di − 1],T2[l(j)..dj − 1]) + ωren

(2) If l(i) ̸= l(di ) and/or l(j) ̸= l(dj), i.e., one of the forests is not a tree:

fdist(T1[l(i)..di ],T2[l(j)..dj ]) = min





fdist(T1[l(i)..di − 1],T2[l(j)..dj ]) + ωdel

fdist(T1[l(i)..di ],T2[l(j)..dj − 1]) + ωins

fdist(T1[l(i)..l(di )− 1],T2[l(j)..l(dj)− 1])

+ fdist(T1[l(di )..di ],T2[l(dj)..dj ])
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Tree Edit Distance Second Recursive Formula

Proof of the Second Recursive Formula
Proof.

(1) follows from the previous recursive formula for l(i) = l(di ) and l(j) = l(dj)
as the following holds:

fdist(T1[l(i)..l(di )− 1],T2[l(j)..l(dj)− 1]) = fdist(∅, ∅) = 0.

(2) The following inequation holds:

[A] fdist(T1[l(i)..di ],T2[l(j)..dj ])≤ fdist(T1[l(i)..l(di )− 1],T2[l(j)..l(dj )− 1]) [B]
+ fdist(T1[l(di )..di ],T2[l(dj )..dj ]) [C]

≤ fdist(T1[l(i)..l(di )− 1],T2[l(j)..l(dj )− 1]) [B]
+ fdist(T1[l(di )..di−1],T2[l(dj )..dj−1]) [D]
+ωren

A ≤ B + C as the left-hand side is the minimal cost mapping, while the
right-hand side is a particular case with a possibly sub-optimal mapping.
C ≤ D + ωren holds for the same reason.

As we are looking for the minimum distance, we can substitute D + ωren by
C .
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Tree Edit Distance Second Recursive Formula

Illustration: Proof of the Second Recursive Formula (1/2)

Case (1): l(i) = l(di ) and l(j) = l(dj):

∅ •

•i

◦di

∅ •

•
j

◦
dj

T1[I (i)...I (di )− 1] T1[I (di )...di − 1] T2[I (j)...I (dj)− 1] T2[I (dj)...dj − 1]

I (i) = I (di ) I (j) = I (dj)
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Tree Edit Distance Second Recursive Formula

Illustration: Proof of the Second Recursive Formula (2/2)

Case (2): l(i) ̸= l(di ) and/or l(j) ̸= l(dj):

•
I (i)

•i

•
I (di )

◦di

•
I (j)

•
j

•
I (dj)

◦
dj

T1[I (i)...I (di )− 1] T1[I (di )...di − 1] T2[I (j)...I (dj)− 1] T2[I (dj)...dj − 1]
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Tree Edit Distance Second Recursive Formula

Implications by the Second Recursive Formula

Note: fdist(T1[l(di )..di ],T2[l(dj)..dj ] is the tree edit distance between
the subtrees rooted in T[di ] and T[dj ]. We use the following notation:

treedist(di , dj) = fdist(T1[l(di )..di ],T2[l(dj)..dj ])

Dynamic Programming: As the same sub-problem must be solved
many times, we use a dynamic programming approach.

Bottom-Up: As for the computation of the tree distance treedist(i , j)
we need almost all values treedist(di , dj) (di ∈ desc(T1[i ]),
dj ∈ desc(T1[j ])), we use a bottom-up approach.

Key Roots: If
di is on the path from l(i) to T1[i ] and
dj is on the path from l(j) to T2[j ],

then treedist(di , dj) is computed as a byproduct of treedist(i , j).
We call the nodes that are not computed as a byproducts the key
roots.
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Tree Edit Distance Second Recursive Formula

Key Roots

Definition (Key Root)

The set of key roots of a tree T is defined as

kr(T) = {k ∈ N(T) | ∄k ′ ∈ N(T) : k ′ > k and l(k) = l(k ′)}

Alternative definition: A key root is a node of T that either has a left
sibling or is the root of T.

Example:kr(T ) = {3, 5, 6}
f6

d4

a1 c3

b2

e5

Only subtrees rooted in a key root need a separate computation.

The number of key roots is equal to the number of leaves in the tree.
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Tree Edit Distance Tree Edit Distance Algorithm (Zhang&Shasha)

The Edit Distance Algorithm I/II

tree-edit-dist(T1,T2)

td [1..|T1|, 1..|T2|] : empty array for tree distances;
l1 = lmld(root(T1)); kr1 = kr(l1, |leaves(T1)|);
l2 = lmld(root(T2)); kr2 = kr(l2, |leaves(T2)|);
for x = 1 to |kr1| do

for y = 1 to |kr2| do
forest-dist(kr1[x ], kr2[y ], l1, l2, td);

l1 is an array of size |T1|, l1[i ] is the leftmost leaf descendant of node
i ; l2 is the analog for T2 (detailed algorithm for lmld(.) follows)

kr1 is an array that contains all the key roots of T1 sorted in ascending
order; kr2 is the analog for T2 (detailed algorithm kr(., .) follows)

Algorithm and lemmas by [ZS89] (see also [AG97])
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Tree Edit Distance Tree Edit Distance Algorithm (Zhang&Shasha)

The Edit Distance Algorithm II/II

forest-dist(i , j , l1, l2, td)

fd [l1[i ]− 1..i , l2[j ]− 1..j ] : empty array;
fd [l1[i ]− 1, l2[j ]− 1] = 0;
for di = l1[i ] to i do fd [di , l2[j ]− 1] = fd [di − 1, l2[j ]− 1] + ωdel ;
for dj = l2[j ] to j do fd [l1[i ]− 1, dj ] = fd [l1[i ]− 1, dj − 1] + ωins ;
for di = l1[i ] to i do

for dj = l2[j ] to j do
if l1[di ] = l1[i ] and l2[dj ] = l2[j ] then

fd [di , dj ] = min(fd [di − 1, dj ] + ωdel ,
fd [di , dj − 1] + ωins ,
fd [di − 1, dj − 1] + ωren);

td [di , dj ] = f [di , dj ];
else fd [di , dj ] = min(fd [di − 1, dj ] + ωdel ,

fd [di , dj − 1] + ωins ,
fd [l1[di ]− 1, l2[dj ]− 1] + td [di , dj ]);
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Tree Edit Distance Tree Edit Distance Algorithm (Zhang&Shasha)

The Temporary Forest Distance Matrix

fd [di , dj ] contains the forest distance between

T1[l(i)..di ], where di ∈ desc(T1[i ]) and
T2[l(j)..dj ], where dj ∈ desc(T2[j ]).

fdist(T1[l(i)..di ],T2[l(j)..dj ])

∅ = T1[l(i)..l(i)− 1]

T1[l(i)..l(i)]
...

T1[l(i)..i ]

di ↓

dj →

T 2
[l(
j)
..l
(j
)−

1]
=
∅

T 2
[l(
j)
..l
(j
)]

..
T 2
[l(
j)
..j
]

fd is temporary and exists only in forest-dist()
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Tree Edit Distance Tree Edit Distance Algorithm (Zhang&Shasha)

The Tree Distance Matrix

td [i , j ] stores the tree edit distance between

the tree rooted in T1[i ] (i .e.,T1[l(i)..i ]) and
the tree rooted in T2[j ] (i .e.,T2[l(j)..j ]).

each call of forest-dist() fills new values into td

td [|T1|, |T2|] stores the tree edit distance between T1 and T2
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Tree Edit Distance Tree Edit Distance Algorithm (Zhang&Shasha)

Computing Key Roots and Left-Most Leaf Descendants

The tree edit distance algorithm uses the following functions:

lmld(i): computes an array with the left-most leaf descendants of all
descendants of a node i

kr(l , lc): given the array l = lmld(i) of left-most leaf descendants,
and the number lc of leaf descendants of i , compute all key roots of
the subtree rooted in i

tree-edit-dist(T1,T2)

td [1..|T1|, 1..|T2|] : empty array for tree distances;
l1 = lmld(root(T1)); kr1 = kr(l1, |leaves(T1)|);
l2 = lmld(root(T2)); kr2 = kr(l2, |leaves(T2)|);
for x = 1 to |kr1| do

for y = 1 to |kr2| do
forest-dist(kr1[x ], kr2[y ], l1, l2, td);
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Tree Edit Distance Tree Edit Distance Algorithm (Zhang&Shasha)

Computing the Left-Most Leaf Descendants

lmld(v, l)

foreach child c of v (left to right) do l ← lmld(c, l);
if v is a leaf then

l [id(v)]← id(v)
else

c1 ← first child of v;
l [id(v)]← l [id(c1)];

return l;

Input: root node v of a tree T, empty array l [1..|T|]
Output: array l , l [i ] is the left-most leaf descendent of node T[i ]

lmld(root(T)) (see tree-edit-dist(., .)) is implemented as
lmld(root(T), l) with an empty array l [1..|T|].

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 40 / 64



Tree Edit Distance Tree Edit Distance Algorithm (Zhang&Shasha)

Computing the Key Roots

kr(l , lc)

kr [1..lc]: empty array;
visited [ ]: boolean array of size |l |, init with false;
k ← |kr |; i ← |l |;
while k ≥ 1 do

if not visited[l [i ]] then
kr [k- -]← i ;
visited [l [i ]]← true;

i- -;
return kr ;

Input:
l [1..|T|]: l [i ] is the left-most leaf descendent of node T[i ]
lc = |leaves(T)| is the number of leaves in T

Output: array kr [1..|leaves(T)|] with key roots sorted by node ID
Note: Loop condition is correct due to k ≥ 1⇒ i ≥ 1
(the number of key roots is exactly the number of leaves, and kr will always
be filled when all nodes are traversed)
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Tree Edit Distance Example: Tree Edit Distance Computation

Outline

1 Tree Edit Distance
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Example: Tree Edit Distance Computation
Complexity of the Tree Edit Distance Algorithm

2 Conclusion
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Tree Edit Distance Example: Tree Edit Distance Computation

Example Trees and Edit Costs

T1 T2

f6

d4

a1 c3

b2

e5

f6

c4

d3

a1 b2

e5

Example: Edit distance between T1 and T2.

ωins = ωdel = 1
ωren = 0 for identical rename, otherwise ωren = 1

Each of the following slide is the result of a call of forest-dist().
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Tree Edit Distance Example: Tree Edit Distance Computation

Executing the Algorithm (1/9)

1 2 3 4 5 6

I1 1 2 2 1 5 1

1 2 3

kr1 3 5 6

i = kr1[x ] = 3⇒ l1[i ] = 2

j = kr2[y ] = 2⇒ l2[j ] = 2

1 2 3 4 5 6

I2 1 2 1 1 5 1

1 2 3

kr2 2 5 6

temporary array fd :

di ↓
2
3

0 1

1 0

2 1

l1[i ] = l1[di ] and l2[j ] = l2[dj ]

permanent array td :
1 2 3 4 5 6

1
2
3
4
5
6

0

1

dj → 2
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Tree Edit Distance Example: Tree Edit Distance Computation

Executing the Algorithm (2/9)

1 2 3 4 5 6

I1 1 2 2 1 5 1

1 2 3

kr1 3 5 6

i = kr1[x ] = 3⇒ l1[i ] = 2

j = kr2[y ] = 5⇒ l2[j ] = 5

1 2 3 4 5 6

I2 1 2 1 1 5 1

1 2 3

kr2 2 5 6

temporary array fd :

di ↓
2
3

0 1

1 1

2 2

l1[i ] = l1[di ] and l2[j ] = l2[dj ]

permanent array td :
1 2 3 4 5 6

1
2
3
4
5
6

0 1

1 2

dj → 5
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Tree Edit Distance Example: Tree Edit Distance Computation

Executing the Algorithm (3/9)

1 2 3 4 5 6

I1 1 2 2 1 5 1

1 2 3

kr1 3 5 6

i = kr1[x ] = 3⇒ l1[i ] = 2

j = kr2[y ] = 6⇒ l2[j ] = 1

1 2 3 4 5 6

I2 1 2 1 1 5 1

1 2 3

kr2 2 5 6

temporary array fd :

di ↓
2
3

0 1 2 3 4 5 6

1 1 1 2 3 4 5

2 2 2 2 2 3 4

l1[i ] = l1[di ] and l2[j ] = l2[dj ]

permanent array td :
1 2 3 4 5 6

1
2
3
4
5
6

1 0 2 3 1 5

2 1 2 2 2 4

dj → 1 2 3 4 5 6
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Tree Edit Distance Example: Tree Edit Distance Computation

Executing the Algorithm (4/9)

1 2 3 4 5 6

I1 1 2 2 1 5 1

1 2 3

kr1 3 5 6

i = kr1[x ] = 5⇒ l1[i ] = 5

j = kr2[y ] = 2⇒ l2[j ] = 2

1 2 3 4 5 6

I2 1 2 1 1 5 1

1 2 3

kr2 2 5 6

temporary array fd :

di ↓
5

0 1

1 1

l1[i ] = l1[di ] and l2[j ] = l2[dj ]

permanent array td :
1 2 3 4 5 6

1
2
3
4
5
6

1 0 2 3 1 5

2 1 2 2 2 4

1

dj → 2
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Tree Edit Distance Example: Tree Edit Distance Computation

Executing the Algorithm (5/9)

1 2 3 4 5 6

I1 1 2 2 1 5 1

1 2 3

kr1 3 5 6

i = kr1[x ] = 5⇒ l1[i ] = 5

j = kr2[y ] = 5⇒ l2[j ] = 5

1 2 3 4 5 6

I2 1 2 1 1 5 1

1 2 3

kr2 2 5 6

temporary array fd :

di ↓
5

0 1

1 0

l1[i ] = l1[di ] and l2[j ] = l2[dj ]

permanent array td :
1 2 3 4 5 6

1
2
3
4
5
6

1 0 2 3 1 5

2 1 2 2 2 4

1 0

dj → 5
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Tree Edit Distance Example: Tree Edit Distance Computation

Executing the Algorithm (6/9)

1 2 3 4 5 6

I1 1 2 2 1 5 1

1 2 3

kr1 3 5 6

i = kr1[x ] = 5⇒ l1[i ] = 5

j = kr2[y ] = 6⇒ l2[j ] = 1

1 2 3 4 5 6

I2 1 2 1 1 5 1

1 2 3

kr2 2 5 6

temporary array fd :

di ↓
5

0 1 2 3 4 5 6

1 1 2 3 4 4 5

l1[i ] = l1[di ] and l2[j ] = l2[dj ]

permanent array td :
1 2 3 4 5 6

1
2
3
4
5
6

1 0 2 3 1 5

2 1 2 2 2 4

1 1 3 4 0 5

dj → 1 2 3 4 5 6
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Tree Edit Distance Example: Tree Edit Distance Computation

Executing the Algorithm (7/9)

1 2 3 4 5 6

I1 1 2 2 1 5 1

1 2 3

kr1 3 5 6

i = kr1[x ] = 6⇒ l1[i ] = 1

j = kr2[y ] = 2⇒ l2[j ] = 2

1 2 3 4 5 6

I2 1 2 1 1 5 1

1 2 3

kr2 2 5 6

temporary array fd :

di ↓
1
2
3
4
5
6

0 1

1 1

2 1

3 2

4 3

5 4

6 5

l1[i ] = l1[di ] and l2[j ] = l2[dj ]

permanent array td :
1 2 3 4 5 6

1
2
3
4
5
6

1

1 0 2 3 1 5

2 1 2 2 2 4

3

1 1 3 4 0 5

5

dj → 2

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 50 / 64



Tree Edit Distance Example: Tree Edit Distance Computation

Executing the Algorithm (8/9)

1 2 3 4 5 6

I1 1 2 2 1 5 1

1 2 3

kr1 3 5 6

i = kr1[x ] = 6⇒ l1[i ] = 1

j = kr2[y ] = 5⇒ l2[j ] = 5

1 2 3 4 5 6

I2 1 2 1 1 5 1

1 2 3

kr2 2 5 6

temporary array fd :

di ↓
1
2
3
4
5
6

0 1

1 1

2 2

3 3

4 4

5 4

6 5

l1[i ] = l1[di ] and l2[j ] = l2[dj ]

permanent array td :
1 2 3 4 5 6

1
2
3
4
5
6

1 1

1 0 2 3 1 5

2 1 2 2 2 4

3 4

1 1 3 4 0 5

5 5

dj → 5
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Tree Edit Distance Example: Tree Edit Distance Computation

Executing the Algorithm (9/9)

1 2 3 4 5 6

I1 1 2 2 1 5 1

1 2 3

kr1 3 5 6

i = kr1[x ] = 6⇒ l1[i ] = 1

j = kr2[y ] = 6⇒ l2[j ] = 1

1 2 3 4 5 6

I2 1 2 1 1 5 1

1 2 3

kr2 2 5 6

temporary array fd :

di ↓
1
2
3
4
5
6

0 1 2 3 4 5 6

1 0 1 2 3 4 5

2 1 0 1 2 3 4

3 2 1 2 3 4 5

4 3 2 1 2 3 4

5 4 3 2 3 2 3

6 5 4 3 3 3 2

l1[i ] = l1[di ] and l2[j ] = l2[dj ]

permanent array td :
1 2 3 4 5 6

1
2
3
4
5
6

0 1 2 3 1 5

1 0 2 3 1 5

2 1 2 2 2 4

3 3 1 2 4 4

1 1 3 4 0 5

5 5 3 3 5 2

dj → 1 2 3 4 5 6
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

Outline

1 Tree Edit Distance
Preliminaries and Definition
Forests Distance and Recursive Formula
Second Recursive Formula
Tree Edit Distance Algorithm (Zhang&Shasha)
Example: Tree Edit Distance Computation
Complexity of the Tree Edit Distance Algorithm

2 Conclusion
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

Notation

Notation:

|T| is the number of nodes in T
depth(v) is the number of ancestors of v (including v itself)
depth(T) is the maximum depth of a node in T
leaves(T) is the set of leaves of T
t(i) is the subtree rooted in node i
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

forest-dist: Time Complexity

forest-dist(i , j , l1, l2, td)

fd [l1[i ]− 1..i , l2[j ]− 1..j ] : empty array;
fd [l1[i ]− 1, l2[j ]− 1] = 0;
for di = l1[i ] to i do fd [di , l2[j ]− 1] = fd [di − 1, l2[j ]− 1] + ωdel ;
for dj = l2[j ] to j do fd [l1[i ]− 1, dj ] = fd [l1[i ]− 1, dj − 1] + ωins ;
for di = l1[i ] to i do

for dj = l2[j ] to j do
if l1[di ] = l1[i ] and l2[dj ] = l2[j ] then

fd [di , dj ] = min(. . .);
td [di , dj ] = f [di , dj ];

else fd [di , dj ] = min(. . .);

Input nodes are i and j .

They are root nodes of subtrees t1(i) and t2(j).

The nested loop is executed |t1(i)| × |t2(j)| times.

⇒ Time complexity O(|t1(i)| × |t2(j)|)
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

tree-edit-dist: Time Complexity

tree-edit-dist(T1,T2)

td [1..|T1|, 1..|T2|] : empty array for tree distances;
l1 = lmld(root(T1)); kr1 = kr(l1, |leaves(T1)|);
l2 = lmld(root(T2)); kr2 = kr(l2, |leaves(T2)|);
for x = 1 to |kr1| do

for y = 1 to |kr2| do
forest-dist(kr1[x ], kr2[y ], l1, l2, td);

Computing l1/2 and kr1/2 is linear, O(|T1|+ |T2|)
Main loop executes forest-dist() |kr1| × |kr2| times.

Complexity:

∑

i∈kr1

∑

j∈kr2
|t1(i)| × |t2(j)| =

∑

i∈kr1
|t1(i)| ×

∑

j∈kr2
|t2(j)|

The following lemmas help us to reformulate this expression.
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

Collapsed Depth

Definition: The collapsed depth of a node v in T is

cdepth(v) = |anc(v) ∩ kr(T)|,

i.e., the number of ancestors of v (including v itself) that are key
roots.
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

Collapsed Depth

Lemma (Collapsed Depth)

For a tree T with key roots kr(T)

∑

k∈kr(T)
|t(k)| =

|T|∑

k=1

cdepth(k)

Proof.

Consider the left-hand formula:

A node i of T is counted whenever it appears in a subtree t(k).
Node i is in the subtree t(k) iff k is the ancestor of i .
Only the subtrees of key roots are considered.

Thus a node i is counted once for each ancestor key root.

cdepth(i) is the number of ancestor key roots of i (definition of
collapsed depth).

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 58 / 64



Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

Collapsed Depth

Now we can rewrite the complexity formula:

∑

i∈kr1
|t1(i)| ×

∑

j∈kr2
|t2(j)| =

|T1|∑

i=1

cdepth(i)×
|T2|∑

j=1

cdepth(j)

cdepth(T) ≥ cdepth(i) for a node i of T, thus

|T1|∑

i=1

cdepth(i)×
|T2|∑

j=1

cdepth(j) ≤ |T1||T2|cdepth(T1)cdepth(T2)

Two obvious upper bounds for the collapsed depth:

the tree depth: cdepth(T) ≤ depth(T)
the number of key roots: cdepth(T) ≤ |kr(T)|

We show that the number of key roots matches the number of leaves.
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

Number of Key Roots

Lemma (Number of Key Roots)

The number of key roots of a tree is equal to the number of leaves:

|kr(T)| = |leaves(T)|

Proof.

We show that l() is a bijection from the key roots kr(T) to the leaves(T):

(a) Injection – for any i , j ∈ kr(T), i ̸= j ⇒ l(i) ̸= l(j) :
If i > j and l(i) = l(j), j can not be a key root by definition.
Analogous rational hold for j > i .

(b) Surjection – Each leaf x has a key root i ∈ kr(T) such that l(i) = x :
If there is no node i > x with l(i) = l(x), then by definition x itself is
a key root (l(x) = x is always true). Otherwise i is the key root of x .
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

Complexity of the Tree Edit Distance Algorithm

Theorem (Complexity of the Tree Edit Distance Algorithm)

Let D1 and D2 denote the depth, L1 and L2 the number of leaf nodes, and
N1 and N2 the total number of nodes of two trees T1 and T2, respectively.

(1) The runtime of the tree edit distance algorithm is

O(N1N2min(D1, L1)min(D2, L2)).

(2) Let N = max(N1,N2). For full, balanced, binary trees the runtime is

O(N2 log2N).

(3) In the worst case min(D, L) = O(N) and the runtime is O(N4).

(4) The algorithm needs O(N1N2) space.
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

Proof of the Complexity Theorem

Proof.

(1) Runtime (general formula): We have shown before, that the
complexity is O(|T1||T2|cdepth(T1) cdepth(T2)). As
cdepth(T) ≤ |kr(T)| = |leaves(T)| (see definition of cdepth(T) and
previous lemma) and cdepth(T) ≤ depth(T) (follows from the
definition of cdepth(T)), if follows that
cdepth(T) ≤ min(depth(T), |leaves(T)|).

(2) Full, balanced, binary trees: In this case depth(T) = O(log(|T|)).
(3) Worst case: A full binary tree (i.e., each node has zero or two

children) where each non-leaf node has at least one leaf child:
min(depth(T), |leaves(T)|) = O(|T|).

(4) Space: The size of the tree distance matrix td is |T1| × |T2|. In each
call of forest-dist() we need a matrix of size O(|T1| × |T2|), which is
freed when we exit the subroutine.
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

Improvements over the Complexity of the Zhang&Shasha
Algorithm

Klein [Kle98] improves the worst case for the runtime to
O(|T1|2|T2| log(|T2|), thus from O(N4) to O(N3 log(N)).

Dulucq and Touzet [DT03] also give an O(N3 log(N)) algorithm.

Demaine et al. [DMRW07] give an O(N3) algorithm. They show that
the algorithm is worst case optimal among all decomposition
algorithms (i.e., algorithms like [ZS89, Kle98, DT03]), but it is not
robust, i.e., it runs into the worst case when it could do better.

Pawlik and Augsten [PA11] introduce the Robust Tree Edit Distance
(RTED) algorithm which has optimal O(N3) worst case complexity
and is robust.

Further reading:
http://tree-edit-distance.dbresearch.uni-salzburg.at
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