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Tree Edit Distance Preliminaries and Definition Tree Edit Distance Preliminaries and Definition

Outline Edit Operations

We assume ordered, labeled trees

(]

Rename node: ren(v, ")

@ Tree Edit Distance o change label / of v to I’ # |
@ Preliminaries and Definition

Delete node: del(v) (v is not the root node)

e remove v
e connect v's children directly to v's parent node (preserving order)

Insert node: ins(v, p, k, m)
e remove m consecutive children of p, starting with the child at position
k, i.e., the children cg, Cck41,- ., Chkrm—1
@ insert Cx,Cki1,--.,Ckim—1 as children of the new node v
(preserving order)
e insert new node v as k-th child of p

Insert and delete are inverse edit operations
(i.e., insert undoes delete and vice versa)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 Augsten (Univ. Salzburg) Similarity Search WS 2025/26




Tree Edit Distance Preliminaries and Definition

Example: Edit Operations

Tree Edit Distance Preliminaries and Definition

Edit Cost Function

ins((vs,b),v1,2,2) ren(vg,x)
To P —— Ty — 1y
— —
del(vs) ren(vg,c)
Vi,a Vi,a Vi,a
PN /N / N\
V3,C V47C V?,d V3vC V5,b V3vC V5,b
/N / N\
va,¢ vy d va, X vg,d
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Tree Edit Distance Preliminaries and Definition

Definition

@ Represent edit operation as node pair (a,b) # (e, ¢)
(written also as a — b, ¢ is the null node)
e a —¢c: delete a
e € — b: insert b
@ a—b:renameatob

e Cost function a(a — b):

e assign to each edit operation a non-negative real
e cost can be different for different nodes
@ we use constant costs wijns, Wdel, Wren

@ We constrain « to be a distance metric:
(i) triangle inequality: a(a — b) + a(b — ¢) > a(a,c)
(ii) symmetry: a(a — b) = a(b — a)
(iii) identity: a(a — b) =0 < A(a) = A(b)
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Tree Edit Distance Preliminaries and Definition

Postorder Traversal

Definition (Tree Edit Distance)

The tree edit distance between two trees is the minimum cost sequence of
node edit operations (node deletion, node insertion, node rename) that
transforms one tree into the other.

@ Cost of a sequence S = {s1,...,s,} of edit operations:

n

a(S) = a(s)

i=1

@ As the cost function is a metric, also the tree edit distance is a metric.
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@ Postorder traversal of an ordered tree:
o traverse subtrees rooted in children of current node (from left to right)
in postorder
e visit current node
e Example: postorder = (f,e,d, c,b,a)
a6
ds Cq bs
/ N\
f1 €2
@ Observations: The postorder number of a node v is larger than

o the postorder numbers of all its descendants (excluding node v)
e the postorder numbers of all its left siblings
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Tree Edit Distance Preliminaries and Definition

Subtrees and Subforests

Tree Edit Distance Preliminaries and Definition

@ A subtree T’ of T is a tree that consists of:

o a subset of the nodes of T: N(T’) C N(T)
o all edges in T that connect these nodes: E(T') C E(T)}

@ Ordered Forests:

o a forest is a set of trees
e an ordered forest is a sequence of trees

@ Ordered Subforests of a tree T:

o formed by subtrees of T with disjoined nodes
o subtrees ordered by the postorder number in T of their root
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Tree Edit Distance Preliminaries and Definition

Example: Subtrees and Subforests

@ Example tree (postorder numbers are node IDs):
T= ({Vl,V27V3,V4,V5,V6}, {(V6,V4), (V67V5)7 (V4,V1), (V47V3), (V3,V2)})
fe
Ve N
d4 €5

dl c3
b
@ Two subtrees of T:

1= ({wh{}) T = ({va, vi, va}, {(vay v1), (va, v3) })

C3 d4
@ Ordered subforest of T: a a3
F= (({VQ}v {})v ({V47 Vi, V3}v {(V47 Vl)v (V4v V3)})7 ({V5}v {}))
by di &
31/ \C3

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Tree Edit Distance Preliminaries and Definition

Notation I/II

@ We use the following notation:
o TJi] is the i-th node of T in postorder (we say: T[i] is node i of T)
o T[i..j] is the subforest formed by the nodes T[] to T[j]
o /(i) is the left-most leaf descendant of node T/
o desc(T[i]) is the set of all descendants of T[i] including T[/] itself

(elements of desc(T[/]) are usually denoted with d;)

@ Node identifiers:

o we assume that the node IDs correspond to their postorder number
o we refer to a node simply by its ID, if the context is clear

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Notation II/II

@ T[/(i)..i] is the subtree rooted in T[i], i.e., the subtree consisting of
node i and all its descendants
@ A special subforests of the form
T[I()..dj], (d; € desc(T[i]))
is a prefix of the subtree rooted in T[i].

@ Observations:

o If a node k is in T[/(i)..d;], also all its descendants are in T[/(i)..d;].
o A (sub)tree with n nodes has n prefixes.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 12 /64



Tree Edit Distance Preliminaries and Definition

Example: Subtrees and Subforests

@ Example tree:
fo

7N

d4 €5
VRN

ai a3
\
by

@ Descendants: desc(T[4]) = {T[1],T[2], T[3], T[4]}

o Left-most leaf descendants: /(1) = I(4) = 1(6) = T[1]

@ Some ordered subforests of the form T[/(i)..d;]|, d; € desc(i):
T[/(4)..3] | T[/(4)..4] | T[/(6)..5] | T[/(5)..5]

a e ds dy, 65 €5
I / N\ / N\
by a G a
| |
by by
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Tree Edit Distance Preliminaries and Definition

Edit Mapping

@ The cost of the mapping is

a(M) = Z a(a—>b)+Za(a—>€)+Za(5%b),

(a,b)eM aeD bel

where D resp. | are the nodes of T; resp. T that are not in M.

@ Alternative definition of the tree edit distance ted(T1, T2):

ted(T1, T2) = min{a(M) | M is an edit mapping from T; to Ty}

Augsten (Univ. Salzburg)
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Tree Edit Distance Preliminaries and Definition

Edit Mapping

Definition (Edit Mapping)

An edit mapping M between T; and T» is a set of node pairs that satisfy

the following conditions:
(1) (a,b) e M = a e N(Ty),b e N(T»)
(2) for any two pairs (a,b) and (x,y) of M:
(i) a=x< b=y (one-to-one condition)
(i) ais to the left of x! < b is to the left of y
(order condition)

(iii) ais an ancestor of x < b is an ancestor of y
(ancestor condition)

lj.e., a precedes x in both preorder and postorder
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Tree Edit Distance Preliminaries and Definition

Example: Mapping

o M = {(T1[6], T2[6]), (T1[5], T2[5]), (T1[4], T2[3]), (Ta[1], T=[1]),
(T1[2], T2[2])}
o T1[3] is deleted
o T[4] is inserted
e no proper rename (only rename to the same label with cost 0)

T T2
fo o T
7N\ / 0\
dy 6 ___ Ci__ 65
/N TSel T T -l
a_ 4 T - d3
T ;N
by (T __ - a1 b
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Tree Edit Distance Forests Distance and Recursive Formula Tree Edit Distance Forests Distance and Recursive Formula

Outline \ Forest Distance

Definition (Forest Distance)

o The forest distance between two ordered forests is the minimum cost
@ Tree Edit Distance . . . . .
sequence of node edit operations (node deletion, node insertion, node

o Forests Distance and Recursive Formula rename) that transforms one forest into the other.

o Edit mapping and edit operations in a forest:

Each tree in the forest has a root node.

We imagine a dummy node that is the parent of all these root nodes.
The sibling order in the imaginary tree is the tree order in the forest.
The dummy node connects the forest to become a tree.

Then all edit operations and edit mappings valid between two
imaginary trees are valid also between the respective forests.

@ The tree edit distance is a special case of the forest distance, where
the forest has the form T[/(i)..i], i.e., it consists of a single tree.
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Tree Edit Distance Forests Distance and Recursive Formula Tree Edit Distance Forests Distance and Recursive Formula

\ First Recursive Formula: Forest Distance

Recursive Formula: Distance to the Empty Forest

Lemma (Empty Forest [2589, AG97])
Given two trees T1 and To, i € N(T1) and d; € desc(i), j € N(T2) and Lemma (First Recursive Formula)

d; € desc(j), then: Given two trees T1 and Ty, i € N(T1) and d; € desc(i), j € N(T2) and
(1) fdist(0,0) = d;j € desc(j), then:

(ir)  fdist(T1[/(i). d,] 0) = fdist(T1[/(i)..d 1], 0) + waer fdist(T1[/(i)..d; — 1], T2[(j)--dj]) + waer

(i) fdist(D, T2[I(j)..d;]) = fdist(0, Tz[/(J) 1]) + wins fdist(T1[I(i)..d], Ta[1(j)-.dj — 1]) + wins

fdist(T1[/(7)..d;], To[I(j)..d;]) = min { fdist(T[I(i)../(d;) — 1], To[I()../(d;) — 1])
+ fdist(T4[/(d;)..d; — 1], To[/(d})-.d; — 1])

Case (i) requires no edit operation. In cases (ii), the distance corresponds + Wren
to the cost of deleting all nodes in T1[/(i)..d;]. In cases (iii), the distance ‘
corresponds to the cost of inserting all nodes in T[/(j)..d;]. O
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Tree Edit Distance Forests Distance and Recursive Formula

\ Proof

Let M be the minimum-cost map between T1[/()..d;] and T2[/(j)..d}], i.e., the
map we are looking for. Then for T1[d;] and T>[d;] there are three possibilities:

(1) Ti[di] is not touched by a line in M: T;[d;] is deleted and
fdist(T1[1(i)--d], Ta[I(j)--d;]) = fdist(Ta[I(i)..d; — 1], T2[I()-.d;]) + waer
(2) Ta[d;] is not touched by a line in M: T[d;] is inserted and
fdist(T1[/(7)..d], T2[/(j)..d;]) = fdist(T1[/(7)..d;], To[/(j)..dj — 1]) + wins
(3) Both, T1[d;] and T[d;] are touched by a line in M: We show (by

contradiction) that in this case (T1[d;], T2[d;]) € M, i.e., T1[d;] is renamed
to To[d;]: Assume (T1[d;], T2[d{]) € M and (T1[d]], T2[d)]) € M.
o Case Ti[d;] is to the right of T1[d’]: By sibling condition on M also
To[d!] must be to the right of T[d;]. Impossible in To[/(j)..d;].
o Case Ti[d;] is proper ancestor of T1[d}]: By ancestor condition on M
also T,[d}] must be ancestor of T>[d;]. Impossible in To[/(j)..d;].

As these three cases express all possible mappings yielding
fdist(T1[/(7)..d], T2[/(j)..d;]), we take the minimum of these tree costs. O
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Tree Edit Distance

Example: First Recursive Formula (2/3)

Forests Distance and Recursive Formula

al/ \C3 6)3
bo 31/ bo
T1[/(i)...di] T2[l(j).-dj]
(i=6, di=3) (=6, d=3)
(2) fdist(T1[I(i)..di], T2[/(j)..dj — 1]) + wins
a ¢ d3
b :1:\: T “_ﬁlj - b

T =1 To[I()..-d]]

o edit script: del(cs), ins(ds)
o cost: 1+1=2

Augsten (Univ. Salzburg)
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Tree Edit Distance

| Example: First Recursive Formula (1/3)

Forests Distance and Recursive Formula

31/ \C3 d;
by s by
Ta[/(7)...dj] To[1(j)...dj]
(=6, di=3) (=6, =3)
(1) deSt(Tl[/(l)d, — 1], Tz[/(j)dj]) + Wyel
a _ S ds
by al b

T1[(i)...d; — 1]

o edit script: ins(ds), del(cs3)
e cost: 1+1=2

T2[1()---dj]

Similarity Search

WS 2025/26
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Tree Edit Distance

| Example: First Recursive Formula (3/3)

Forests Distance and Recursive Formula

(3) Fdist(Ta[I(i)..I(d;) — 1], T2[I(j)../(d}) — 1])
+ fdist(T1[/(d;)..d; — 1], T2[/(d;)..d; — 1])
+ Wren
a1 c3 @

Tall(i).A(d) — 1] Ta[l(d)..di —1]  T2[l()-I(d;) — 1]
Ta[l(i)..1(d;) — 1] = T[I()--(d;) — 1]: del(ay)
Tl[l(d,)d, — ]_] — Tg[l(dJ)dj — 1] ins(al)

c3 — ds: ren(C3,d3)

cost: 1+14+1=3

by

Ta[l(d))..dj — 1]

Augsten (Univ. Salzburg)
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Analogy to the String Case

@ Why is the third formula not (in analogy to the string case):

fdiSt(Tl[/(i)..d,' — 1], T2[/(j)..dj — 1]) + Wren
o Consider the previous example:

a GB.___ __.d3
N | /N
byzz---a1 . b
T[I(i)..di 1] Tall()..di —1]
e ren(cs,ds) does not transform T1[/(f)..d;] to T2[/(j)..d;]
@ In fact the mapping M = {(a1, a1), (b2, b2), (c3,d3)} is not valid:

o Connect all trees in the forest with a dummy node (e):
o As ds is an ancestor of aj, c3 must be an ancestor of aj, which is false.

Augsten (Univ. Salzburg)
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\ Observation

fdist(T1[1(7)..di—1], Ta[1(j)-d;]) + waer

fdlSt(Tl[/(I)d,], Tz[/(_j)d_,*].]) + Wins

fdist(To[1(7)../(d:) — 1], Ta[1()..1(d;) — 1])
+ fdist(Ta[I(d;)..di—1], T[/(d;)..d;—1])

+ wren

fdlSt(Tl[l(l)d,], T2[/(])dj]) = min

@ Observation about the First Recursive Formula:
o fdist(T1[/(d;)..di—1], T2[/(d})..dj—1]) [D] compares prefixes of subtrees
rooted in d; resp. d;
o all other subforests are prefixes of subtrees rooted in 7 resp. j
o [D] does not fit the scheme (bad for dynamic programming algorithm)

@ We derive the Second Recursive Formula:

o we distinguish two cases (both forests are trees/one forest is not a tree)
e in each case we replace term [D] by a new term that is easier to handle
in a dynamic programming algorithm

Augsten (Univ. Salzburg)
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Tree Edit Distance Second Recursive Formula

. Qutline

© Tree Edit Distance

@ Second Recursive Formula
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Tree Edit Distance Second Recursive Formula

Second Recursive Formula: Forest Distance

Lemma (Second Recursive Formula)

Given two trees T1 and T, i € N(T1) and d; € desc(i), j € N(T2) and

d;j € desc(j), then:

(1) IF1(i) = I(d;) and I(j) = I(d}), i.e., both forests are trees:
fdist(T1[/(7)..di — 1], T2[I(j)..d;]) + waer
fdist(T1[/(7)..di], T2[/(j)..dj — 1]) + wins
fdlSt(Tl[/(l)d, — 1],T2[/(j)dj — 1]) A W

fdlSt(Tl[/(l)d,], T2[/(j)d_,]) = min

(2) IfI(i) # I(d;) and/or I(j) # I(d;), i.e., one of the forests is not a tree:
fdist(T1[/(7)..dj — 1], T2[I(j)..d}]) + wder
fdist(T1[/(7)..di], T2[/(j)..dj — 1]) + wins
fdist(T1[/(7)..1(d;) — 1], To[/(j)-.I(d;) — 1])

+ fdle(Tl[/(d,)d,] Tg[/(dj)d/])
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Tree Edit Distance Second Recursive Formula

Proof of the Second Recursive Formula

Proof.

(1) follows from the previous recursive formula for /(i) = /(d;) and /() = /(d;)
as the following holds:

fdist(T1[1(i)..1(d;) — 1], T2[I(j)-.I(d;) — 1]) = dist(0, 0) = 0.

(2) The following inequation holds:
< fdist(T1[/(i)..I(d;) — 1], T2[I(j)..I(d;) — 1])  [B]
+ fdist(T1[/(d;)..d;], T2[/(d;)-.d}]) [C]
< fdist(T1[/(i)..I(d;) — 1], T2[I(j)..I(d;) — 1])  [B]
+fdist(Tl[l(d,-)..d,-fl],Tg[l(dj)..djfl]) [D]

+ Wren

< B+ C as the left-hand side is the minimal cost mapping, while the
right-hand side is a particular case with a possibly sub-optimal mapping.

C < D + wyen holds for the same reason.

As we are looking for the minimum distance, we can substitute D + wye, by
C.

Similarity Search WS 2025/26
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lllustration: Proof of the Second Recursive Formula (2/2)

e Case (2): /(i) # I(d;) and/or I(j) # I(d;):

1(7)

4)

Ta[1(i)...1(d) — 1] Tu[l(d)...d: — 1]

1G) 1(dj)
Toll (). (ch) — 1] Tall(ch)...d; — 1]

Augsten (Univ. Salzburg) Similarity Search
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Tree Edit Distance Second Recursive Formula

lllustration: Proof of the Second Recursive Formula (1/2)

e Case (1): /(i) = I(d;) _and 1(j) = I(d;):

i J
/'\ /.\
d 4,/ N
DSy N (/) -2 N

Tall(0) ()~ 1) Tall(d)di =1 Tall()d(d) =1 Tall(d)dj — 1]

Augsten (Univ. Salzburg) Similarity Search
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| Implications by the Second Recursive Formula

o Note: fdist(T1[/(d;)..d;], To[/(d;)..d;] is the tree edit distance between
the subtrees rooted in T[d;] and T[d;]. We use the following notation:

treedist(d,-, dj) = fdl'Sf(Tl[/(d,').‘d,'], Tg[/(dj)dj])

@ Dynamic Programming: As the same sub-problem must be solved
many times, we use a dynamic programming approach.
@ Bottom-Up: As for the computation of the tree distance treedist(i, j)
we need almost all values treedist(d;,d;) (d; € desc(T1[i]),
d; € desc(T1[j])), we use a bottom-up approach.
o Key Roots: If
e d; is on the path from /(i) to Ty[i] and
e d; is on the path from /(j) to T[],
then treedist(d;,d;) is computed as a byproduct of treedist(i,j).
We call the nodes that are not computed as a byproducts the key
roots.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 32/64



Tree Edit Distance = Second Recursive Formula Tree Edit Distance ~ Tree Edit Distance Algorithm (Zhang&Shasha)

 Key Roots  Outline

Definition (Key Root)
The set of key roots of a tree T is defined as
kr(T) = {k € N(T) | #k" € N(T) : K > k and I(k) = I(K")} @ Tree Edit Distance

o Alternative definition: A key root is a node of T that either has a left
sibling or is the root of T.

e Example:kr(T) = {3,5,6} @ Tree Edit Distance Algorithm (Zhang&Shasha)

ds
/
a (e
|
by
@ Only subtrees rooted in a key root need a separate computation.

@ The number of key roots is equal to the number of leaves in the tree.
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Tree Edit Distance ~ Tree Edit Distance Algorithm (Zhang&Shasha)

Tree Edit Distance ~ Tree Edit Distance Algorithm (Zhang&Shasha)

The Edit Distance Algorithm 11/11

The Edit Distance Algorithm 1/11

tree-edit-dist(Tq, T2) forest-dist(/, j, h, b, td)

td[1..|T1|,1..|T2|] : empty array for tree distances; fd[h[i] — 1..i, b[j] — 1..j] : empty array;

h = Imld(root(T1)); kri = kr(/y, |leaves(T1)|); fd[h[] =1, b[j] -1]=0; _

b = Imld(root(T3)); kry = kr(h, |leaves(T5)|); for di = h[i] to i do fd[d;, b[j] —1] = fd[d; —1, b[j] = 1] + waer;
for x =1 to |kri| do for d; = /2[{] e ] do fd[h[i] — 1, dj] = fd[L[i] — 1, dj — 1] + wins;

for y =1 to |kr2| do for gi :dll[l]/tE']ltdo' d
; : or di = h[j] to j do
forest-dist(kri[x], kra[y], h, k2, td); ifJ hd] = [{] and bd] = bl] then
y fd[d,', CI'J] = min(fd[d,' —1, dJ] + Wdel,

fd[dia dj - 1] + Wins,
fd[d, = 1, dJ — 1] A wren);
td[di’ dj] = f[dfv dJ]'

@ /1 is an array of size |T1|, i[i] is the leftmost leaf descendant of node
i; k is the analog for T, (detailed algorithm for Imld(.) follows)

@ kry is an array that contains all the key roots of T; sorted in ascending else fd[d;, dj] = min(fd[d; — 1, dj] + wer,
order; kry is the analog for T, (detailed algorithm kr(.,.) follows) fd[d;, dj — 1] + Wins,
@ Algorithm and lemmas by [ZS89] (see also [AGI7]) td[h[di] — 1, b[dj] — 1] + td[d;, dj]);
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Tree Edit Distance ~ Tree Edit Distance Algorithm (Zhang&Shasha)

Tree Edit Distance ~ Tree Edit Distance Algorithm (Zhang&Shasha)

\ The Tree Distance Matrix

The Temporary Forest Distance Matrix

e fd[d;, d;] contains the forest distance between
o T1[/(i)..d;], where d; € desc(T1[i]) and
o Toll(j)..d;], where d; € desc(T,[j]).

N

N
RO
/\%\\/\m\\ "&w\\

0 = Tu[I(i)../(1) — 1]
Tu[/(0)--1(7)]

> fdist(T1[/(/)..di], T2[I(j)..dj])

Ta[1(7)-.1]

e fd is temporary and exists only in forest-dist()

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Tree Edit Distance ~ Tree Edit Distance Algorithm (Zhang&Shasha)

Computing Key Roots and Left-Most Leaf Descendants

The tree edit distance algorithm uses the following functions:

@ Imld(7): computes an array with the left-most leaf descendants of all
descendants of a node i

@ kr(/,lc): given the array / = Imld(i) of left-most leaf descendants,
and the number /c of leaf descendants of i/, compute all key roots of
the subtree rooted in /

tree-edit-dist(Ty, T2)

td[1..|T1],1..|T2|] : empty array for tree distances;
h = Imld(root(T1)); krn = kr(h, |leaves(T1)|);
h = Imld(root(T2)); kr» = kr(h, |leaves(T>2)|);
for x =1 to |kr;| do
for y =1 to |kr| do
forest-dist( kri[x], kraly], h, h, td);

o td[i, j] stores the tree edit distance between

o the tree rooted in Ty[i] (i.e., T1[/(i)..i]) and
o the tree rooted in Ta[j] (i.e., T2[/(j).4])-

@ each call of forest-dist() fills new values into td
o td[|T1],|T2|] stores the tree edit distance between T; and T,
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Tree Edit Distance ~ Tree Edit Distance Algorithm (Zhang&Shasha)

Computing the Left-Most Leaf Descendants

Imld(v, /)

foreach child c of v (left to right) do / < Imld(c, /);
if v is a leaf then
Iid(v)] + id(v)
else
c1 + first child of v:
Nid(v)] + /[id(c1)];
return |;

@ Input: root node v of a tree T, empty array /[1..|T|]
e Output: array /, [[i] is the left-most leaf descendent of node T[]

@ Imld(root(T)) (see tree-edit-dist(.,.)) is implemented as
Imld(root(T), ) with an empty array /[1..|T|].

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Similarity Search WS 2025/26

Augsten (Univ. Salzburg)




Tree Edit Distance Tree Edit Distance Algorithm (Zhang&Shasha) Tree Edit Distance Example: Tree Edit Distance Computation

Computing the Key Roots

kr[l..Ic]: empty array;
visited[]: boolean array of size |/|, init with false; .
o |k[r]|, i b |l © Tree Edit Distance
while kK > 1 do
if not visited[/[/]] then
krlk--] < i;
visited[I[i]] < true;
i-=
return kr;

QOutline

@ Example: Tree Edit Distance Computation

@ Input:
o [[1..|T|]: I[i] is the left-most leaf descendent of node T|[i]
o Ic = |leaves(T)| is the number of leaves in T
o Output: array kr[l..|leaves(T)|] with key roots sorted by node ID
@ Note: Loop condition is correct dueto k> 1=/i>1
(the number of key roots is exactly the number of leaves, and kr will always
be filled when all nodes are traversed)
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Tree Edit Distance Example: Tree Edit Distance Computation Tree Edit Distance Example: Tree Edit Distance Computation

Example Trees and Edit Costs Executing the Algorithm (1/9)

1 2 3 4 5 6 1 2 3 4 5 6
. . ho[1]2]2][1]5]1] ho[1]2]1[1[5]1]
1 2 1 2 3 1 2 3
fe fe
o N kn [3]5]6 ] krp [2]5]6 ]
da €5 4 és
/N ! . .
a1 3 ds o i=kn[x]=3=h[i]=2
b‘z 21/ \bz o j=knly]|=2= h[j]=2
@ Example: Edit distance between T1 and T». ° temporag irgy fd: ° ?erzma3ne4nt53r6ray td:
0 Wins = Weel = 1 d\l/ (J) 1 -
o wren = 0 for identical rename, otherwise w,e, = 1 ! 2170 g L ‘;
@ Each of the following slide is the result of a call of forest-dist(). 3/ 21 :
6
L] Al = hld] and bL[j] = b[d]
Similarity Search WS 2025/26
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Example: Tree Edit Distance Computation

Executing the Algorithm (2/9)

4 5 6

1[5]1] b |

N| w

o i=kn[x]=3=hli]=2
@ j=knly]=5= h[j]=5

@ temporary array fd: @ permanent array td:

d—5 1.2 3 4 5 6
di L[ 0|1 ’ 0 S
21111 3 1 2 [
322 :

6

l:' h[i] = h[di] and k[j] = h[d]]
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Executing the Algorithm (4/9)

@ i=kn[x]=5= h[i]=5
° j=knlyl|=2=h[j]=2

@ temporary array fd: @ permanent array td:

d—?2 1 2 3 4 5 6
di 4101 ; 1102315
5/11]1 3 (212|224
4
|| Alil = h[d] and h[j] = kld]] ° 1

Augsten (Univ. Salzburg)
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Tree Edit Distance E

xample: Tree Edit Distance Computation

Executing the Algorithm (3/9)

4 5 6

1 3
1 2]1]5]1]
1

ko [3]5]6]

o i=kn[x]=3=h[i]=2
o j=knlyl]=6=h[j]=1

ho |

@ temporary array fd:

dg—12 3 4 5 6
d L[0]1]2]3]4[5]6
2[1 11 2[3]4]5
3[2]12]2/2[2[34

|| hlil = hld] and hj] = kld]

Augsten (Univ. Salzburg)

Tree Edit Distance

Executing the Algorithm (5/9)

Similarity Search

@ permanent array td:

1 2 3 4 5 6
10 231 s
2|1 2|22 4

1
2
3
4
5
6

WS 2025/26 46 /64

Example: Tree Edit Distance Computation

1 2 3 4 5 6
h |1]2]2]1]5]1]
1 2 3

ki [3]5]6]

 i=kn[x]=5= h[i]=5
o j=knly]=5= h[j]=5

@ temporary array fd:

d —5
d |01
5/110

D h[i] = h[d:] and k[j] = k[d]]

Augsten (Univ. Salzburg)

Similarity Search

@ permanent array td:
1 2 3 4 5 6

1102 |3 |1]5
2 (1 |2]2 2|4

DO AWN
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Tree Edit Distance Example: Tree Edit Distance Computation

Executing the Algorithm (6/9) Executing the Algorithm (7/9)
1 2 3 4 5 6 1 2 3 4 5 6
1 2 3 4 s s 1 2 3 4 s 6 h |1]2]2]1]5]1] L [1]2]1]1]5]1]
h [1]2]2]1]5]1] b |[1]2[1]1]5]1]

1
S D e (31576 o [21s]6]
e (3156 s

° i=kn[x]=5= hli]=5
o j=knly|]=6=h[j]=1

o i=knx]=6=hL[i]=1
o j=knlyl=2=hlj]=2

@ temporary array fd: @ permanent array td:
@ temporary array fd: @ permanent array td: f’éﬁf R
X 1
d—1 2 3 4 5 6 1 2 3 4 5 6 d’il‘l > [Tlol2]3 115
d 0112|3456 1 221 3 /212|224
5/1|1]2[3]4]4]|5 2 |1]0]213]1]5 4 3
3 [2[1(2|2]2 4 313(2 5 [1[1(3[4]0]5
h[il = hld;] and L[j] = h]d; 4 || 404 '3 6 T8
[ Alil = hld] and b[j] = k[d] o L - 554
6 \ 6[6 5
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Tree Edit Distance Example: Tree Edit Distance Computation Tree Edit Distance Example: Tree Edit Distance Computation

Executing the Algorithm (8/9) Executing the Algorithm (9/9)
o i=knlx]=6=hL[i]=1 o i=kn[x]=6=h[i]=1
e j=knly]=5= h[j]=5 o j=knlyl=6=h[j]=1
@ temporary array fd: @ permanent array td: @ temporary array fd: @ permanent array td:
di—5 1 2 3 4 5 6 dg—12 3 4 5 6 1 2 3 4 5 6
d |01 L 1 1 d L[0]1]2]3]4]5][6 1 [0]1]2]38]1 5
111 2 [1]0]2]3]1]5 1[10[1 2[3[4]5 2 [1]0]2]3]1]5
2[2]2 lefifefelels 2[2[1]0]12 3|4 32tz p2 s
3133 5 [1]1]3]4]0]5 3131211121345 5 [1/1]3[4]0]5
4 4 4 6 5 5 4 4 3 2 1 2 3 4 6 5 5 3 3 5 2
5/5|4 5[5[4]3]2[3[2]3
6/6|5 6/6 5[4 3|3[3]|2
[ Ali] = hld] and h[j] = h[d] [ ] Alil = hld] and h[j] = k[d)]
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Outline

@ Tree Edit Distance

@ Complexity of the Tree Edit Distance Algorithm

Augsten (Univ. Salzburg)
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

Notation

@ Notation:

|T| is the number of nodes in T

depth(v) is the number of ancestors of v (including v itself)
depth(T) is the maximum depth of a node in T

leaves(T) is the set of leaves of T

t(7) is the subtree rooted in node i

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

forest-dist: Time Complexity

forest-dist(/, j, I, b, td)

fd[h[i] = 1..i, b[j] — 1..j] : empty array;
fd[h[i] — 1, b[j] — 1] = 0;
for d; = /1[/] to /i do fd[d,, /2[]] = 1] = fd[d, -1, I2L/] = ].] + Wyel;
for d; = h|j] to j do fd[L[i] — 1,d;] = fd[h[i] — 1,d; — 1] + wins;
for d; = h[i] to i do
for d; = h[j] to j do
if /1[d,'] = /1[[] and IQ[dJ] = IQLI] then
fd[d;, dj] = min(...);
td[dia dJ] = f[dl'v dJ]v
else fd[d;, dj] = min(...);

Input nodes are / and j.

They are root nodes of subtrees t;(i) and t2(j).
The nested loop is executed [t1(7)| x |t2(j)| times.
= Time complexity O(|t1(1)] x |t2(j)])

Augsten (Univ. Salzburg)
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

tree-edit-dist: Time Complexity

tree-edit-dist(Tq, T2)

td[1..|T1],1..|T2|] : empty array for tree distances;
h = Imld(root(T1)); krn = kr(h, |leaves(T1)l);
h = Imld(root(T2)); kra = kr(h, |leaves(T2)l);
for x =1 to |kr1| do
for y =1 to |kr2| do
forest-dist(kri[x], kra[y], h, kb, td);

o Computing /, and kry 5 is linear, O(|T1| +[T2])
@ Main loop executes forest-dist() |kri| x |kr2| times.

o Complexity:
D> lu@lx ()l =Y la()lx Y i)
iEkrlekrg ickr jEkrz

@ The following lemmas help us to reformulate this expression.
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Collapsed Depth

Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

Collapsed Depth

@ Definition: The collapsed depth of a node v in T is
cdepth(v) = |anc(v) N kr(T)],

i.e., the number of ancestors of v (including v itself) that are key
roots.

Similarity Search WS 2025/26
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

- Collapsed Depth

@ Now we can rewrite the complexity formula:

[T1] [To|
D la(lx Y 1)l =) cdepth(i) x Y cdepth(j)
i€ekn JjEkn i=1 j=1

e cdepth(T) > cdepth(i) for a node i of T, thus

IT1| T2
Z cdepth(i) x Z cdepth(j) < |T1||T2|cdepth(T1)cdepth(T2)
i=1 j=1

@ Two obvious upper bounds for the collapsed depth:

o the tree depth: cdepth(T) < depth(T)
o the number of key roots: cdepth(T) < |kr(T)|

@ We show that the number of key roots matches the number of leaves.

Similarity Search WS 2025/26
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Lemma (Collapsed Depth)
For a tree T with key roots kr(T)

IT|

> |t(k) =Y cdepth(k)

kekr(T) k=1

| \.

@ Consider the left-hand formula:

o A node i of T is counted whenever it appears in a subtree t(k).
o Node i is in the subtree t(k) iff k is the ancestor of i.
@ Only the subtrees of key roots are considered.

@ Thus a node i is counted once for each ancestor key root.

o cdepth(i) is the number of ancestor key roots of i (definition of
collapsed depth). O

N\
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 Number of Key Roots

Lemma (Number of Key Roots)

The number of key roots of a tree is equal to the number of leaves:

|kr(T)| = |leaves(T)| )
(Proof |
We show that /() is a bijection from the key roots kr(T) to the leaves(T):
(a) Injection — for any i,j € kr(T), i #j = 1(i) # I(j) :
If i > j and /(i) = I(j), j can not be a key root by definition.
Analogous rational hold for j > /.
(b) Surjection — Each leaf x has a key root i € kr(T) such that /(i) = x:

If there is no node i > x with /(i) = /(x), then by definition x itself is
a key root (/(x) = x is always true). Otherwise / is the key root of x.

[]

\,
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Tree Edit Distance Complexity of the Tree Edit Distance Algorithm

Complexity of the Tree Edit Distance Algorithm

Theorem (Complexity of the Tree Edit Distance Algorithm)

Let Dy and D, denote the depth, L1 and L, the number of leaf nodes, and
Ny and Ny the total number of nodes of two trees Ty and T, respectively.

(1) The runtime of the tree edit distance algorithm is
O(N1i N2 min(D1, L1) min(Ds, Ly)).
(2) Let N = max(Ny, N»). For full, balanced, binary trees the runtime is
O(N?log? N).

(3) In the worst case min(D, L) = O(N) and the runtime is O(N*).
(4) The algorithm needs O(N;N») space.
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Improvements over the Complexity of the Zhang&Shasha

Algorithm

e Klein [Kle98] improves the worst case for the runtime to
O(|T1[?|T2| log(|T2|), thus from O(N*) to O(N3log(N)).

@ Dulucq and Touzet [DTO03] also give an O(N3log(N)) algorithm.

e Demaine et al. [DMRWO07] give an O(N3) algorithm. They show that
the algorithm is worst case optimal among all decomposition
algorithms (i.e., algorithms like [ZS89, Kle98, DTO03]), but it is not
robust, i.e., it runs into the worst case when it could do better.

e Pawlik and Augsten [PA11] introduce the Robust Tree Edit Distance
(RTED) algorithm which has optimal O(N3) worst case complexity
and is robust.

Further reading:
http://tree-edit-distance.dbresearch.uni-salzburg.at
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Proof of the Complexity Theorem

(1) Runtime (general formula): We have shown before, that the
complexity is O(|T1||T2|cdepth(T1) cdepth(T2)). As
cdepth(T) < |kr(T)| = |leaves(T)| (see definition of cdepth(T) and
previous lemma) and cdepth(T) < depth(T) (follows from the
definition of cdepth(T)), if follows that
cdepth(T) < min(depth(T), |leaves(T)|).

(2) Full, balanced, binary trees: In this case depth(T) = O(log(|T|)).

(3) Worst case: A full binary tree (i.e., each node has zero or two
children) where each non-leaf node has at least one leaf child:
min(depth(T), |leaves(T)|) = O(|T|).

(4) Space: The size of the tree distance matrix td is |T1| x |T2|. In each
call of forest-dist() we need a matrix of size O(|T1| x |T2|), which is
freed when we exit the subroutine. O

v
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Conclusion

- Summary

o Edit distance for trees

Edit scripts and mappings
Recursive Formula

Dynamic programming algorithm
Tree edit distance example

Tree Edit Distance Complexity
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