Similarity Search

Traversal Strings and Constrained Edit Distance

Nikolaus Augsten

nikolaus.augsten@plus.ac.at
Department of Computer Science
University of Salzburg

[\ database
research group

https://dbresearch.uni-salzburg.at

WS 2025/26
Version November 6, 2025

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Outline

@ Scarch Space Reduction for the Tree Edit Distance
@ Similarity Join and Search Space Reduction
@ Lower Bound: Traversal Strings
@ Upper Bound: Constrained Edit Distance

© Conclusion

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Similarity Join and Search Space Reduction

Outline

@ Scarch Space Reduction for the Tree Edit Distance
@ Similarity Join and Search Space Reduction

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Similarity Join and Search Space Reduction

Definition: Similarity Join

Definition (Similarity Join)

Given two sets of trees, S; and S,, and a distance threshold 7, let

0¢(T;, T;) be a function that assesses the edit distance between two trees
T; € 51 and T; € 5. The similarity join operation between two sets of
trees reports in the output all pairs of trees (T;, T;) € S1 x S such that

5t(T,',TJ') S T.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Similarity Join and Search Space Reduction

Similarity Join Algorithm with Upper and Lower Bounds

for each T; € 5; do
for each T; € 5, do

if upperBound(T;, T;) <7 then
output(T,-, Tj)

else if lowerBound(T;, T;) > 7 then
/* do nothing */

else if 6:(T;, T;) < 7 then
output(T;, T;)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Outline

@ Scarch Space Reduction for the Tree Edit Distance

@ Lower Bound: Traversal Strings

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Preorder and Postorder Traversal Strings

@ Each node label is a single character of an alphabet X..

@ Traversal Strings:

o pre(T) is the string of T's node labels in preorder
o post(T) is the string of T's node labels in postorder

Lemma (Tree Inequality)

Let pre(T1) and pre(T2) be the preorder strings, and post(T1) and
post(T2) be the postorder strings of two trees T1 and T, respectively.
Then

pre(T1) # pre(T2) or post(T1) # post(T2) = T1 # To

y

The inversion of the argument is obviously true:

T1 =Ty = pre(T1) = pre(T2) and post(T1) = post(T») []

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Notes: Traversal Strings and Tree Inequality

@ If the traversal strings of two trees are equal, the trees can still be

different:
Tq Tr
a =+~ a
/ \ |
b a b
|
a

pre(T1) = aba pre(Ty) = aba

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Lower Bound

Theorem (Lower Bound)

If the trees are at tree edit distance k, then the string edit distance
between their preorder and postorder traversals is at most k.

Tree operations map to string operations (illustration on next slide):

@ Insertion (ins(v,p, k, m)): Let t1...tr be the subtrees rooted in the

ppre(ty)...pre(tx_1)pre(ty)...pre(tkam—1)pre(tkem) - - - pre(tr).
Inserting v moves the subtrees k to m:

The string distance is 1. Analog rationale for postorder.
@ Deletion: Inverse of insertion.

@ Rename: With node rename a single string character is renamed.

children of p. Then the preorder traversal of the subtree rooted in p is

ppre(ty)...pre(tx—1)v pre(ty) ... pre(tkam—1)pre(tiem) - - . pre(tr).

[]

y

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

llustration for the Lower Bound Proof (Preorder)

lnsvpkm

del(
tk+m 1 tkt+m tk—i—m
ty . tk+rm—1
p pre(ty). .. pre(tk—1) p pre(t1). .. pre(tk—1)
pre(ty). .. pre(term—1) v pre(ty). .. pre(tkem—1)
pre(titm). . . pre(tr) pre(titm). - . pre(tr)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Lower Bound

@ From the lower bound theorem it follows that

max(ds(pre(T1), pre(T2)), ds(post(T1), post(T2))) < 0:(T1, T2)

where ds and d; are the string and the tree edit distance, respectively.

@ The string edit distance can be computed faster:

o string edit distance runtime: O(n?)
o tree edit distance runtime: O(n>)
@ Similarity join: match all trees with 6:(T1,T2) <7
o if max(ds(pre(T1), pre(T2)), ds(post(T1), post(T2))) > T
then 6,(T1, T2) > 7
e thus we do not have to compute the expensive tree edit distance

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Example: Traversal String Lower Bound

T4 /N
bz\::\‘~_ _____________ —a}/,,bz
pre(T1) = fdacbe pre(To) = fcdabe
post(T1) = abcdef post(Ty) = abdcef

ds(pre(T1), pre(T2)) =2
ds(post(T1), post(Tz)) =2
0t(T1, T2) =2

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Example: Traversal String Lower Bound

@ The string distances of preorder and postorder may be different.

@ The string distances and the tree distance may be different.

T To
a a
/ N\ |
b a b
| / N\
c a c

pre(T1) = abac pre(T2) = abac

post(T1) = bcaa Os(pre(T1), pre(T2)) =0 post(T2) = acba
ds(post(T1), post(T,)) =2

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Outline

@ Scarch Space Reduction for the Tree Edit Distance

@ Upper Bound: Constrained Edit Distance

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Edit Mapping

@ Recall the definition of the edit mapping:

Definition (Edit Mapping)

An edit mapping M between T1 and T, is a set of node pairs that satisfy
the following conditions:
(1) (a,b) e M =a e N(T1),be N(Ty)
(2) for any two pairs (a,b) and (x,y) of M:
(i) a=x< b=y (one-to-one condition)
(i) ais to the left of x! < b is to the left of y
(order condition)

(iii) a is an ancestor of x < b is an ancestor of y
(ancestor condition)

li.e., a precedes x in both preorder and postorder

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Constrained Edit Distance

@ We compute a special case of the edit distance to get a faster
algorithm.

@ /ca(a,b) is the lowest common ancestor of a and b.

@ Additional requirement on the mapping M:
(4) for any pairs (a1, b1), (a2, b2), (x,y) of M:

Ica(ai,ay) is a proper ancestor of x
~
Ica(by, by) is a proper ancestor of .

@ Intuition: Distinct subtrees of T are mapped to distinct subtrees of
Ts.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Example: Constrained Edit Distance

Tq T
PR
/ \
b/\cd h
.‘/.‘/' - - \'-;.,\./\.. \
//"7.\ /\\ """"""""" e \I
d e f_ B

e Constrained edit distance (dashed lines): 0.(T1,T2) =5

o edit sequence: ren(c, i), del(b), del(e), ins(h), ins(e)

@ Unconstrained edit distance (dotted lines): 6:(T1,T2) =3

o mapping M; = {(a, a),(d,d), (e, e),(c,i),(f,f)(g, &)}
o edit sequence: ren(c, i), del(b), ins(h)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Example: Constrained Edit Distance

Tq To
a
/ \‘"‘ d h
\
\ /\——_ |
f / A\
\\ - f &

@ (e, e) violates the 4th condition of the constrained mapping:
o lca(e,f)inTyis a
@ ais a proper ancestor of d in T;
o assume (e, e),(f,f),(d,d) € M.
o lca(e,f)in Tyis h
@ his not a proper ancestor of d in T

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Complexity of the Constrained Edit Distance

Theorem (Complexity of the Constrained Edit Distance)

Let T1 and Ty be two trees with |T1| and |T2| nodes, respectively. There

IS an algorithm that computes the constrained edit distance between T4
and T» with runtime

O(|T1|[T2]).

y

See [Zha95, GJKT02]. O \

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Constrained Edit Distance: Upper Bound

Theorem (Upper Bound)

Let Ty and Ty be two trees, let :(T1, T2) be the unconstrained and
dc(T1, T2) be the constrained tree edit distance, respectively. Then

0t(T1, T2) < 6c(T1, To)

y

See [GJKT02].] \

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Use of the Upper Bound

@ The constrained edit distance can be computed faster:

o constrained edit distance runtime: O(n?)
e unconstrained edit distance runtime: O(n>)

@ Similarity join: match all trees with 6,(T1,T2) <7

o if 0o(T1,T2) < 7 then also §;(T1,T2) < 7.
e thus we do not have to compute the expensive tree edit distance

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Conclusion

Summary

@ Tree Edit Distance Complexity

@ Search Space Reduction

e Lower Bound: Traversal Strings
e Upper Bound: Constrained Edit Distance

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

@ Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and
Ting Yu.
Approximate XML joins.
In Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 287-298, Madison, Wisconsin, 2002.
ACM Press.

s Kaizhong Zhang.
Algorithms for the constrained editing distance between ordered
labeled trees and related problems.
Pattern Recognition, 28(3):463—-474, 1995.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

