Similarity Search

Traversal Strings and Constrained Edit Distance

Nikolaus Augsten

nikolaus.augsten@plus.ac.at
Department of Computer Science
University of Salzburg

M database
research group

https://dbresearch.uni-salzburg.at

WS 2025/26

Version November 6, 2025

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Similarity Join and Search Space Reduction

Outline

QOutline

@ Search Space Reduction for the Tree Edit Distance
@ Similarity Join and Search Space Reduction
@ Lower Bound: Traversal Strings
@ Upper Bound: Constrained Edit Distance

© Conclusion

WS 2025/26

Similarity Search

Augsten (Univ. Salzburg)

Search Space Reduction for the Tree Edit Distance Similarity Join and Search Space Reduction

Definition: Similarity Join

@ Search Space Reduction for the Tree Edit Distance
@ Similarity Join and Search Space Reduction

Similarity Search WS 2025/26

Augsten (Univ. Salzburg)

Definition (Similarity Join)

Given two sets of trees, S; and S, and a distance threshold 7, let

0¢(T;, T;) be a function that assesses the edit distance between two trees
T; € 51 and T; € S;. The similarity join operation between two sets of
trees reports in the output all pairs of trees (T;, T;) € S; x S such that
5t(T,',Tj) <T.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Similarity Join and Search Space Reduction Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Similarity Join Algorithm with Upper and Lower Bounds Outline

simJoin(Sl, 52)

for each T; € S; do @ Search Space Reduction for the Tree Edit Distance
for each T; € 5; do
if upperBound(T;,T;) < 7 then @ Lower Bound: Traversal Strings
output(T,-, T_,')

else if lowerBound(T;, T;) > 7 then
/* do nothing */

else if §;(T;, T;) < 7 then
output(T;, T;)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 Augsten (Univ. Salzburg) Similarity Search WS 2025/26 6/22

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Preorder and Postorder Traversal Strings . Notes: Traversal Strings and Tree Inequality

@ Each node label is a single character of an alphabet ¥.
@ Traversal Strings:

o pre(T) is the string of T's node labels in preorder

@ If the traversal strings of two trees are equal, the trees can still be
o post(T) is the string of T's node labels in postorder

different:
Lemma (Tree Inequality) N T2

Let pre(T1) and pre(T2) be the preorder strings, and post(T1) and
post(T2) be the postorder strings of two trees T1 and T», respectively. /\
Then b a

L —-—0O — L

pre(T1) # pre(T2) or post(T1) # post(T2) = T1 # T»

.

pre(T1) = aba pre(T2) = aba
The inversion of the argument is obviously true:

T1 = T2 = pre(T1) = pre(T2) and post(T1) = post(T2) =

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Lower Bound

Theorem (Lower Bound)

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

lllustration for the Lower Bound Proof (Preorder)

If the trees are at tree edit distance k, then the string edit distance
between their preorder and postorder traversals is at most k.

.

Tree operations map to string operations (illustration on next slide):

o Insertion (ins(v, p, k,m)): Let t...tr be the subtrees rooted in the
children of p. Then the preorder traversal of the subtree rooted in p is

ppre(ty) ... pre(ti—1)pre(ts) - . - pre(tim-1)pre(tism) - - - pre(ty).
Inserting v moves the subtrees k to m:

ppre(ty) ... pre(tk—1) v pre(t) ... pre(tisym—1)pre(tetm) - - . pre(tr).
The string distance is 1. Analog rationale for postorder.

@ Deletion: Inverse of insertion.

@ Rename: With node rename a single string character is renamed. D)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Lower Bound

ins(v, p, k,m

D

tktm tr

tk tktm—1

tiym—1 titm tf v

p pre(ty). .. pre(tk—1)
v pre(tg). .. pre(tosm—1)
pre(t4m). . . pre(te)

p pre(ty). .. pre(ti-1)
pre(tk). .. pre(tktrm—1)
pre(tksrm). - . pre(tr)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Example: Traversal String Lower Bound

@ From the lower bound theorem it follows that

max(ds(pre(T1), pre(T2)), ds(post(T1), post(T2))) < 0¢(T1, T2)

where ds and d; are the string and the tree edit distance, respectively.
@ The string edit distance can be computed faster:
o string edit distance runtime: O(n?)
o tree edit distance runtime: O(n?)
o Similarity join: match all trees with 6;(T1,T2) <7
o if max(ds(pre(T1), pre(T2)), ds(post(T1), post(T2))) > 7
then 5t(T1,T2) >T
o thus we do not have to compute the expensive tree edit distance

Augsten (Univ. Salzburg)

Similarity Search WS 2025/26

fo =~ T fe
/N e el /N
d4\ e Ca "~ 65
/Nl |
31\ Cc3 Tt~ - __ds3
DRI / N\
by . TTe--l_ A& __b

pre(T1) = fdache
post(T1) = abcdef

pre(Ty) = fedabe
post(Tp) = abdcef

ds(pre(Ty), pre(T2)) =2
ds(post(T1), post(Ty)) =2
0t(T1,To) =2

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Example: Traversal String Lower Bound

@ The string distances of preorder and postorder may be different.

@ The string distances and the tree distance may be different.

T T2
a a
/' \ [
b a b
| / N\
C a C
pre(T1) = abac pre(Ty) = abac

post(Ty) = bcaa ds(pre(T1), pre(T2)) =0 post(T2) = acha
ds(post(Ty), post(T2)) =2
6t(T17 T2) = 3

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Edit Mapping

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

. Qutline

@ Search Space Reduction for the Tree Edit Distance

@ Upper Bound: Constrained Edit Distance

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Constrained Edit Distance

@ Recall the definition of the edit mapping:

Definition (Edit Mapping)

An edit mapping M between T1 and T» is a set of node pairs that satisfy
the following conditions:
(1) (a,b) e M = a € N(T1),be N(T»)
(2) for any two pairs (a,b) and (x,y) of M:
(i) a=x< b=y (one-to-one condition)
(i) ais to the left of x! < b is to the left of y
(order condition)

(i) a is an ancestor of x < b is an ancestor of y
(ancestor condition)

li.e., a precedes x in both preorder and postorder

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

@ We compute a special case of the edit distance to get a faster
algorithm.

@ Jca(a,b) is the lowest common ancestor of a and b.

@ Additional requirement on the mapping M:
(4) for any pairs (a1, by), (a2, bz), (x,y) of M:

Ica(ay, ap) is a proper ancestor of x
=
Ica(by, by) is a proper ancestor of y.

@ Intuition: Distinct subtrees of T; are mapped to distinct subtrees of
T,.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Example: Constrained Edit Distance

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Example: Constrained Edit Distance

Ty T2
JR——
/ N\
b/-» \”C’f.,;,d h
R
/ A\ /\ e
d e f_ & e
. f 8

e Constrained edit distance (dashed lines): 0.(T1,T2) =5
e constrained mapping M. = {(a, a), (d, d), (c, i), (f,f)(g,g)}
o edit sequence: ren(c, i), del(b), del(e), ins(h), ins(e)

@ Unconstrained edit distance (dotted lines): 6,(T1, T2) =3

o mapping M, = {(a, a), (d.d), (e, e),(c,i),(f,f)(g.8)}
o edit sequence: ren(c,i), del(b), ins(h)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Complexity of the Constrained Edit Distance

Theorem (Complexity of the Constrained Edit Distance)

Let T1 and Ty be two trees with |T1| and |T,| nodes, respectively. There
is an algorithm that computes the constrained edit distance between T1
and Ty with runtime

O(|T1[T2l).

See [Zha95, GJKT02].

Augsten (Univ. Salzburg)

a a
-d h

b c
/A
/N SN e
d e f_ & /N

--f 8
o (e, e) violates the 4th condition of the constrained mapping:
Ica(e,f)in Ty is a
a is a proper ancestor of d in Ty
assume (e, e), (f,f),(d,d) € M,
Ica(e,f) in Ty is h
h is not a proper ancestor of d in To

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 18/22

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Constrained Edit Distance: Upper Bound

Theorem (Upper Bound)

Let T1 and T, be two trees, let 6:(T1,T2) be the unconstrained and
dc(T1, T2) be the constrained tree edit distance, respectively. Then

0¢(T1, T2) < 0c(Tq, T2)

See [GJKT02]. O

Similarity Search WS 2025/26

Augsten (Univ. Salzburg)

Similarity Search WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance Conclusion

Use of the Upper Bound - Summary

@ The constrained edit distance can be computed faster:

o constrained edit distance runtime: O(n?) o Tree Edit Distance Complexity
o unconstrained edit distance runtime: O(n%) @ Search Space Reduction
o Similarity join: match all trees with 6,(T1,T2) <7 o Lower Bound: Traversal Strings
o if 6c(T1, T2) < 7 then also 6¢(T1,T2) < 7. e Upper Bound: Constrained Edit Distance

o thus we do not have to compute the expensive tree edit distance

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 Augsten (Univ. Salzburg) Similarity Search WS 2025/26 22/22

I
[Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and
Ting Yu.
Approximate XML joins.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 287-298, Madison, Wisconsin, 2002.
ACM Press.

[4 Kaizhong Zhang.
Algorithms for the constrained editing distance between ordered
labeled trees and related problems.
Pattern Recognition, 28(3):463-474, 1995.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

