Similarity Search

Traversal Strings and Constrained Edit Distance

Nikolaus Augsten

nikolaus.augsten@plus.ac.at Department of Computer Science University of Salzburg

WS 2025/26

Version November 6, 2025

Augsten (Univ. Salzburg)

Similarity Search

WS 2025/26

Augsten (Univ. Salzburg)

Outline

2 Conclusion

Similarity Search

WS 2025/26

WS 2025/26

• Lower Bound: Traversal Strings

Search Space Reduction for the Tree Edit Distance • Similarity Join and Search Space Reduction

• Upper Bound: Constrained Edit Distance

Search Space Reduction for the Tree Edit Distance Similarity Join and Search Space Reduction

Definition: Similarity Join

Definition (Similarity Join)

Given two sets of trees, S_1 and S_2 , and a distance threshold τ , let $\delta_t(\mathsf{T}_i,\mathsf{T}_i)$ be a function that assesses the edit distance between two trees $T_i \in S_1$ and $T_i \in S_2$. The similarity join operation between two sets of trees reports in the output all pairs of trees $(T_i, T_i) \in S_1 \times S_2$ such that $\delta_t(\mathsf{T}_i,\mathsf{T}_i) \leq \tau.$

Similarity Search

Search Space Reduction for the Tree Edit Distance Similarity Join and Search Space Reduction

Outline

- Search Space Reduction for the Tree Edit Distance
 - Similarity Join and Search Space Reduction
 - Lower Bound: Traversal Strings
 - Upper Bound: Constrained Edit Distance
- 2 Conclusion

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 Augsten (Univ. Salzburg) 3 / 22

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Similarity Join Algorithm with Upper and Lower Bounds

$simJoin(S_1, S_2)$

for each $T_i \in S_1$ do for each $T_i \in S_2$ do if upperBound $(T_i, T_i) \le \tau$ then $output(T_i, T_i)$ else if lowerBound(T_i, T_i) > τ then /* do nothing */ else if $\delta_t(\mathsf{T}_i,\mathsf{T}_i) \leq \tau$ then $output(T_i, T_i)$

Augsten (Univ. Salzburg)

WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Preorder and Postorder Traversal Strings

- Each node label is a single character of an alphabet Σ .
- Traversal Strings:
 - pre(T) is the string of T's node labels in preorder
 - post(T) is the string of T's node labels in postorder

Lemma (Tree Inequality)

Let $pre(T_1)$ and $pre(T_2)$ be the preorder strings, and $post(T_1)$ and $post(T_2)$ be the postorder strings of two trees T_1 and T_2 , respectively. Then

$$\textit{pre}(\mathsf{T}_1) \neq \textit{pre}(\mathsf{T}_2) \ \textit{or} \ \textit{post}(\mathsf{T}_1) \neq \textit{post}(\mathsf{T}_2) \Rightarrow \mathsf{T}_1 \neq \mathsf{T}_2$$

Proof.

The inversion of the argument is obviously true:

$$\mathsf{T}_1 = \mathsf{T}_2 \Rightarrow \mathit{pre}(\mathsf{T}_1) = \mathit{pre}(\mathsf{T}_2) \text{ and } \mathit{post}(\mathsf{T}_1) = \mathit{post}(\mathsf{T}_2)$$

Search Space Reduction for the Tree Edit Distance

- Similarity Join and Search Space Reduction
- Lower Bound: Traversal Strings
- Upper Bound: Constrained Edit Distance
- 2 Conclusion

Outline

Augsten (Univ. Salzburg)

WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Notes: Traversal Strings and Tree Inequality

• If the traversal strings of two trees are equal, the trees can still be different:

$$pre(T_1) = aba \quad pre(T_2) = aba$$

Augsten (Univ. Salzburg)

Similarity Search

Lower Bound

Theorem (Lower Bound)

If the trees are at tree edit distance k, then the string edit distance between their preorder and postorder traversals is at most k.

Proof.

Tree operations map to string operations (illustration on next slide):

• Insertion (ins(v, p, k, m)): Let $t_1 \dots t_f$ be the subtrees rooted in the children of p. Then the preorder traversal of the subtree rooted in p is $p \operatorname{pre}(t_1) \dots \operatorname{pre}(t_{k-1}) \operatorname{pre}(t_k) \dots \operatorname{pre}(t_{k+m-1}) \operatorname{pre}(t_{k+m}) \dots \operatorname{pre}(t_f).$

Inserting v moves the subtrees k to m:

$$ppre(t_1) \dots pre(t_{k-1}) \vee pre(t_k) \dots pre(t_{k+m-1}) pre(t_{k+m}) \dots pre(t_f).$$

The string distance is 1. Analog rationale for postorder.

- Deletion: Inverse of insertion.
- Rename: With node rename a single string character is renamed.

Augsten (Univ. Salzburg)

WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Lower Bound

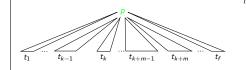
• From the lower bound theorem it follows that

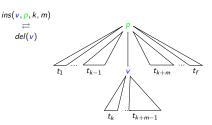
$$\max(\delta_s(pre(\mathsf{T}_1), pre(\mathsf{T}_2)), \delta_s(post(\mathsf{T}_1), post(\mathsf{T}_2))) \leq \delta_t(\mathsf{T}_1, \mathsf{T}_2)$$

where δ_s and δ_t are the string and the tree edit distance, respectively.

- The string edit distance can be computed faster:
 - string edit distance runtime: $O(n^2)$
 - tree edit distance runtime: $O(n^3)$
- Similarity join: match all trees with $\delta_t(T_1, T_2) < \tau$
 - if $\max(\delta_s(pre(\mathsf{T}_1), pre(\mathsf{T}_2)), \delta_s(post(\mathsf{T}_1), post(\mathsf{T}_2))) > \tau$ then $\delta_t(\mathsf{T}_1,\mathsf{T}_2) > \tau$
 - thus we do not have to compute the expensive tree edit distance

Illustration for the Lower Bound Proof (Preorder)





$$p \ pre(t_1) \dots pre(t_{k-1})$$

 $pre(t_k) \dots pre(t_{k+m-1})$
 $pre(t_{k+m}) \dots pre(t_f)$

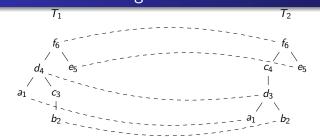
p
$$pre(t_1) \dots pre(t_{k-1})$$

v $pre(t_k) \dots pre(t_{k+m-1})$
 $pre(t_{k+m}) \dots pre(t_f)$

Augsten (Univ. Salzburg)

WS 2025/26

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings Example: Traversal String Lower Bound



$$pre(T_1) = fdacbe$$

 $post(T_1) = abcdef$

$$pre(T_2) = fcdabe$$

 $post(T_2) = abdcef$

$$\delta_s(pre(\mathsf{T}_1), pre(\mathsf{T}_2)) = 2$$

 $\delta_s(post(\mathsf{T}_1), post(\mathsf{T}_2)) = 2$

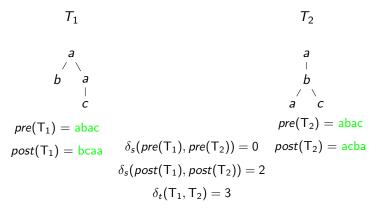
$$\delta_t(\mathsf{T}_1,\mathsf{T}_2)=2$$

WS 2025/26 Augsten (Univ. Salzburg) Similarity Search

Similarity Search

Example: Traversal String Lower Bound

- The string distances of preorder and postorder may be different.
- The string distances and the tree distance may be different.



Augsten (Univ. Salzburg)

Similarity Search

13 / 22

Augsten (Univ. Salzburg)

Outline

2 Conclusion

Search Space Reduction for the Tree Edit Distance • Similarity Join and Search Space Reduction

• Upper Bound: Constrained Edit Distance

• Lower Bound: Traversal Strings

WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Constrained Edit Distance

- We compute a special case of the edit distance to get a faster algorithm.
- Ica(a, b) is the lowest common ancestor of a and b.
- Additional requirement on the mapping *M*:
 - (4) for any pairs (a_1, b_1) , (a_2, b_2) , (x, y) of M:

$$\begin{array}{l} \textit{lca}(a_1,a_2) \text{ is a proper ancestor of } x \\ \Leftrightarrow \end{array}$$

 $lca(b_1, b_2)$ is a proper ancestor of y.

• Intuition: Distinct subtrees of T₁ are mapped to distinct subtrees of T_2 .

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

WS 2025/26

Edit Mapping

• Recall the definition of the edit mapping:

Definition (Edit Mapping)

An edit mapping M between T_1 and T_2 is a set of node pairs that satisfy the following conditions:

- (1) $(a, b) \in M \Rightarrow a \in N(T_1), b \in N(T_2)$
- (2) for any two pairs (a, b) and (x, y) of M:
 - (i) $a = x \Leftrightarrow b = y$ (one-to-one condition)
 - (ii) a is to the left of $x^1 \Leftrightarrow b$ is to the left of y (order condition)
 - (iii) a is an ancestor of $x \Leftrightarrow b$ is an ancestor of y (ancestor condition)

¹i.e., a precedes x in both preorder and postorder

Augsten (Univ. Salzburg)

Similarity Search

WS 2025/26

Augsten (Univ. Salzburg)

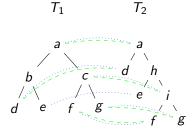
Similarity Search

WS 2025/26

16 / 22

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Example: Constrained Edit Distance



- Constrained edit distance (dashed lines): $\delta_c(T_1, T_2) = 5$
 - constrained mapping $M_c = \{(a, a), (d, d), (c, i), (f, f)(g, g)\}$
 - edit sequence: ren(c, i), del(b), del(e), ins(h), ins(e)
- Unconstrained edit distance (dotted lines): $\delta_t(\mathsf{T}_1,\mathsf{T}_2)=3$
 - mapping $M_t = \{(a, a), (d, d), (e, e), (c, i), (f, f)(g, g)\}$
 - edit sequence: ren(c, i), del(b), ins(h)

Augsten (Univ. Salzburg)

WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Complexity of the Constrained Edit Distance

Theorem (Complexity of the Constrained Edit Distance)

Let T_1 and T_2 be two trees with $|T_1|$ and $|T_2|$ nodes, respectively. There is an algorithm that computes the constrained edit distance between T₁ and T₂ with runtime

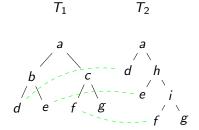
$$O(|T_1||T_2|)$$
.

Proof.

See [Zha95, GJK+02].

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Example: Constrained Edit Distance



- (e, e) violates the 4th condition of the constrained mapping:
 - lca(e, f) in T_1 is a
 - a is a proper ancestor of d in T_1
 - assume $(e, e), (f, f), (d, d) \in M_c$
 - lca(e, f) in T_2 is h
 - h is not a proper ancestor of d in T₂

Augsten (Univ. Salzburg)

Similarity Search

WS 2025/26

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Constrained Edit Distance: Upper Bound

Theorem (Upper Bound)

Let T_1 and T_2 be two trees, let $\delta_t(T_1, T_2)$ be the unconstrained and $\delta_c(\mathsf{T}_1,\mathsf{T}_2)$ be the constrained tree edit distance, respectively. Then

$$\delta_t(\mathsf{T}_1,\mathsf{T}_2) \leq \delta_c(\mathsf{T}_1,\mathsf{T}_2)$$

Proof.

See [GJK⁺02].

WS 2025/26 Augsten (Univ. Salzburg) Similarity Search

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Use of the Upper Bound

- The constrained edit distance can be computed faster:
 - constrained edit distance runtime: $O(n^2)$
 - unconstrained edit distance runtime: $O(n^3)$
- Similarity join: match all trees with $\delta_t(\mathsf{T}_1,\mathsf{T}_2) \leq \tau$
 - if $\delta_c(\mathsf{T}_1,\mathsf{T}_2) \leq \tau$ then also $\delta_t(\mathsf{T}_1,\mathsf{T}_2) \leq \tau$.
 - thus we do not have to compute the expensive tree edit distance

Augsten (Univ. Salzburg)

Similarity Search

WS 2025/26

21 / 22

Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and Ting Yu.

Approximate XML joins.

In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 287-298, Madison, Wisconsin, 2002. ACM Press.

Kaizhong Zhang.

Algorithms for the constrained editing distance between ordered labeled trees and related problems.

Pattern Recognition, 28(3):463-474, 1995.

Augsten (Univ. Salzburg)

Similarity Search

WS 2025/26

22 / 22

Summary

- Tree Edit Distance Complexity
- Search Space Reduction
 - Lower Bound: Traversal Strings
 - Upper Bound: Constrained Edit Distance

Conclusion

Augsten (Univ. Salzburg) Similarity Search WS 2025/26