
Similarity Search
Traversal Strings and Constrained Edit Distance

Nikolaus Augsten
nikolaus.augsten@plus.ac.at

Department of Computer Science
University of Salzburg

https://dbresearch.uni-salzburg.at

WS 2025/26
Version November 6, 2025

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 1 / 22

Outline

1 Search Space Reduction for the Tree Edit Distance
Similarity Join and Search Space Reduction
Lower Bound: Traversal Strings
Upper Bound: Constrained Edit Distance

2 Conclusion

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 2 / 22

Search Space Reduction for the Tree Edit Distance Similarity Join and Search Space Reduction

Outline

1 Search Space Reduction for the Tree Edit Distance
Similarity Join and Search Space Reduction
Lower Bound: Traversal Strings
Upper Bound: Constrained Edit Distance

2 Conclusion

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 3 / 22

Search Space Reduction for the Tree Edit Distance Similarity Join and Search Space Reduction

Definition: Similarity Join

Definition (Similarity Join)

Given two sets of trees, S1 and S2, and a distance threshold τ , let
δt(Ti ,Tj) be a function that assesses the edit distance between two trees
Ti ∈ S1 and Tj ∈ S2. The similarity join operation between two sets of
trees reports in the output all pairs of trees (Ti ,Tj) ∈ S1 × S2 such that
δt(Ti ,Tj) ≤ τ .

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 4 / 22

Search Space Reduction for the Tree Edit Distance Similarity Join and Search Space Reduction

Similarity Join Algorithm with Upper and Lower Bounds

simJoin(S1,S2)

for each Ti ∈ S1 do
for each Tj ∈ S2 do

if upperBound(Ti ,Tj) ≤ τ then
output(Ti ,Tj)

else if lowerBound(Ti ,Tj) > τ then
/* do nothing */

else if δt(Ti ,Tj) ≤ τ then
output(Ti ,Tj)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 5 / 22

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Outline

1 Search Space Reduction for the Tree Edit Distance
Similarity Join and Search Space Reduction
Lower Bound: Traversal Strings
Upper Bound: Constrained Edit Distance

2 Conclusion

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 6 / 22

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Preorder and Postorder Traversal Strings

Each node label is a single character of an alphabet Σ.

Traversal Strings:

pre(T) is the string of T’s node labels in preorder
post(T) is the string of T’s node labels in postorder

Lemma (Tree Inequality)

Let pre(T1) and pre(T2) be the preorder strings, and post(T1) and
post(T2) be the postorder strings of two trees T1 and T2, respectively.
Then

pre(T1) ̸= pre(T2) or post(T1) ̸= post(T2) ⇒ T1 ̸= T2

Proof.

The inversion of the argument is obviously true:

T1 = T2 ⇒ pre(T1) = pre(T2) and post(T1) = post(T2)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 7 / 22

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Notes: Traversal Strings and Tree Inequality

If the traversal strings of two trees are equal, the trees can still be
different:

T1 T2

a

b a

̸= a

b

a

pre(T1) = aba pre(T2) = aba

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 8 / 22

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Lower Bound

Theorem (Lower Bound)

If the trees are at tree edit distance k, then the string edit distance
between their preorder and postorder traversals is at most k.

Proof.

Tree operations map to string operations (illustration on next slide):

Insertion (ins(v, p, k ,m)): Let t1 . . . tf be the subtrees rooted in the
children of p. Then the preorder traversal of the subtree rooted in p is

p pre(t1) . . . pre(tk−1)pre(tk) . . . pre(tk+m−1)pre(tk+m) . . . pre(tf).

Inserting v moves the subtrees k to m:

ppre(t1) . . . pre(tk−1) v pre(tk) . . . pre(tk+m−1)pre(tk+m) . . . pre(tf).

The string distance is 1. Analog rationale for postorder.

Deletion: Inverse of insertion.

Rename: With node rename a single string character is renamed.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 9 / 22

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Illustration for the Lower Bound Proof (Preorder)

p

t1 tk−1 tk tk+m−1 tk+m tf
...

p pre(t1). . . pre(tk−1)
pre(tk). . . pre(tk+m−1)
pre(tk+m). . . pre(tf)

p

t1 tk−1 v

tk tk+m−1

tk+m tf
...

...

...

ins(v , p, k ,m)
⇄

del(v)

p pre(t1). . . pre(tk−1)
v pre(tk). . . pre(tk+m−1)
pre(tk+m). . . pre(tf)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 10 / 22

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Lower Bound

From the lower bound theorem it follows that

max(δs(pre(T1), pre(T2)), δs(post(T1), post(T2))) ≤ δt(T1,T2)

where δs and δt are the string and the tree edit distance, respectively.

The string edit distance can be computed faster:

string edit distance runtime: O(n2)
tree edit distance runtime: O(n3)

Similarity join: match all trees with δt(T1,T2) ≤ τ

if max(δs(pre(T1), pre(T2)), δs(post(T1), post(T2))) > τ
then δt(T1,T2) > τ
thus we do not have to compute the expensive tree edit distance

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 11 / 22

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Example: Traversal String Lower Bound

f6

d4

a1 c3

b2

e5

T1

pre(T1) = fdacbe

post(T1) = abcdef

f6

c4

d3

a1 b2

e5

T2

pre(T2) = fcdabe

post(T2) = abdcef

δs(pre(T1), pre(T2)) = 2

δs(post(T1), post(T2)) = 2

δt(T1,T2) = 2

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 12 / 22

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Example: Traversal String Lower Bound

The string distances of preorder and postorder may be different.

The string distances and the tree distance may be different.

a

b a

c

T1

pre(T1) = abac

post(T1) = bcaa

a

b

a c

T2

pre(T2) = abac

post(T2) = acbaδs(pre(T1), pre(T2)) = 0

δs(post(T1), post(T2)) = 2

δt(T1,T2) = 3

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 13 / 22

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Outline

1 Search Space Reduction for the Tree Edit Distance
Similarity Join and Search Space Reduction
Lower Bound: Traversal Strings
Upper Bound: Constrained Edit Distance

2 Conclusion

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 14 / 22

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Edit Mapping

Recall the definition of the edit mapping:

Definition (Edit Mapping)

An edit mapping M between T1 and T2 is a set of node pairs that satisfy
the following conditions:

(1) (a, b) ∈ M ⇒ a ∈ N(T1), b ∈ N(T2)

(2) for any two pairs (a, b) and (x, y) of M:

(i) a = x ⇔ b = y (one-to-one condition)
(ii) a is to the left of x1 ⇔ b is to the left of y

(order condition)
(iii) a is an ancestor of x ⇔ b is an ancestor of y

(ancestor condition)

1i.e., a precedes x in both preorder and postorder

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 15 / 22

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Constrained Edit Distance

We compute a special case of the edit distance to get a faster
algorithm.

lca(a, b) is the lowest common ancestor of a and b.

Additional requirement on the mapping M:

(4) for any pairs (a1, b1), (a2, b2), (x, y) of M:

lca(a1, a2) is a proper ancestor of x
⇔

lca(b1, b2) is a proper ancestor of y.

Intuition: Distinct subtrees of T1 are mapped to distinct subtrees of
T2.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 16 / 22

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Example: Constrained Edit Distance

a

b

d e

c

f g

T1

a

d h

e i

f g

T2

Constrained edit distance (dashed lines): δc(T1,T2) = 5

constrained mapping Mc = {(a, a), (d , d), (c , i), (f , f)(g , g)}
edit sequence: ren(c , i), del(b), del(e), ins(h), ins(e)

Unconstrained edit distance (dotted lines): δt(T1,T2) = 3

mapping Mt = {(a, a), (d , d), (e, e), (c , i), (f , f)(g , g)}
edit sequence: ren(c , i), del(b), ins(h)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 17 / 22

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Example: Constrained Edit Distance

a

b

d e

c

f g

T1

a

d h

e i

f g

T2

(e, e) violates the 4th condition of the constrained mapping:

lca(e, f) in T1 is a
a is a proper ancestor of d in T1

assume (e, e), (f , f), (d , d) ∈ Mc

lca(e, f) in T2 is h
h is not a proper ancestor of d in T2

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 18 / 22

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Complexity of the Constrained Edit Distance

Theorem (Complexity of the Constrained Edit Distance)

Let T1 and T2 be two trees with |T1| and |T2| nodes, respectively. There
is an algorithm that computes the constrained edit distance between T1

and T2 with runtime
O(|T1||T2|).

Proof.

See [Zha95, GJK+02].

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 19 / 22

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Constrained Edit Distance: Upper Bound

Theorem (Upper Bound)

Let T1 and T2 be two trees, let δt(T1,T2) be the unconstrained and
δc(T1,T2) be the constrained tree edit distance, respectively. Then

δt(T1,T2) ≤ δc(T1,T2)

Proof.

See [GJK+02].

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 20 / 22

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Use of the Upper Bound

The constrained edit distance can be computed faster:

constrained edit distance runtime: O(n2)
unconstrained edit distance runtime: O(n3)

Similarity join: match all trees with δt(T1,T2) ≤ τ

if δc(T1,T2) ≤ τ then also δt(T1,T2) ≤ τ .
thus we do not have to compute the expensive tree edit distance

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 21 / 22

Conclusion

Summary

Tree Edit Distance Complexity

Search Space Reduction

Lower Bound: Traversal Strings
Upper Bound: Constrained Edit Distance

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 22 / 22

Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and
Ting Yu.
Approximate XML joins.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 287–298, Madison, Wisconsin, 2002.
ACM Press.

Kaizhong Zhang.
Algorithms for the constrained editing distance between ordered
labeled trees and related problems.
Pattern Recognition, 28(3):463–474, 1995.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 22 / 22

