
Similarity Search
Token-Based Tree Distances

Nikolaus Augsten
nikolaus.augsten@plus.ac.at

Department of Computer Science
University of Salzburg

https://dbresearch.uni-salzburg.at

WS 2025/26
Version November 6, 2025

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 1 / 43

Outline

1 Token-based Tree Distances

2 Binary Branches

3 pq-Grams

4 Conclusion

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 2 / 43

Token-based Tree Distances

Tokens for Trees – Intuition

q-Grams for strings:

split string into substrings (q-grams) of length q
strings with many common substrings are similar

Tokens for trees:

split tree into small subunits (tokens) of the same shape
tokens may be individual nodes, subtrees, or subgraphs
trees with many common tokens are similar

Example: the so-called pq-gram tokens are besom-shaped subtrees
with p + q nodes

v1

...

vp

vp+1 ... vp+q

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 3 / 43

Token-based Tree Distances

Token Profile and Label Tuples

Token profile P(T): set of all tokens of tree T

a token may be a subtree or a subgraph of the tree
the token profile P(T) of a tree T is the set of all its tokens

A linear encoding of a token traverses all its nodes in preorder:
v1

...

vp

vp+1 ... vp+q

= (v1, . . . , vp, vp+1, . . . , vp+q)

Label tuple λ(t): tuple of the nodes labels λ(vi) of token
t = (v1, v2, . . . , vk) in preorder:

λ(t) = (λ(v1), λ(v2), . . . , λ(vk))

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 4 / 43

Token-based Tree Distances

Token Index

Definition (Token Index)

Let P(T) be a token profile of tree T . The token index, I, of tree T is the
bag of all label tuples of T,

I(T) =
⊎

g∈PT

λ(g)

Note:

tokens consist of nodes and are unique within a tree
but: different tokens may yield identical label tuples
thus the token index may contain duplicates

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 5 / 43

Token-based Tree Distances

Token-Based Distance

Definition (Token-Based Distance)

The token-based distance between two trees, T and T′, with token indexes
I(T) and I(T ′), respectively, is defined as

δ(T,T′) = |I(T) ⊎ I(T′)| − 2|I(T) C I(T′)|

Metric normalization to [0..1]: δ′g (T,T
′) = δg (T,T′)

|I(T)⊎I(T′)|−|I(T)CI(T′)|
Pseudo-metric properties hold for normalization [ABG10]:

✓ self-identity: x = y ̸⇐ ⇒ δg (x , y) = 0
✓ symmetry: δg (x , y) = δg (y , x)
✓ triangle inequality: δg (x , z) ≤ δg (x , y) + δg (y , z)

Different trees may have identical indexes.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 6 / 43

Token-based Tree Distances

Storing the Token Index Efficiently

Problem: How to store node labels efficiently?

Long labels: large storage overhead
Varying label length: in a relational database, the inefficient VARCHAR
type must be used instead of the efficient CHAR type

Solution: Hashing

compute fingerprint hash for labels
store concatenation of the hashed labels

Fingerprint hash function (e.g., Karp-Rabin [KR87]):

maps a string s to a hash value h(s)
h(s) is of fixed length
h(s) is unique with high probability
(for two different strings s1 ̸= s2, h(s1) ̸= h(s2) with high probability)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 7 / 43

Token-based Tree Distances

Overview: Token Index

Token profile: (so-called pq-grams in the example, p = 2, q = 3)

∗
a

∗ ∗ a

∗
a

∗ a b

∗
a

a b c

∗
a

b c ∗

∗
a

c ∗ ∗

a

a

∗ ∗ e

a

a

∗ e b

a

a

e b ∗

a

a

b ∗ ∗

a

e

∗ ∗ ∗

a

b

∗ ∗ ∗

a

b

∗ ∗ ∗

a

c

∗ ∗ ∗

Hashing: map tokens to integers:

serialize−−−−→ (∗, a, a, b, c)
∗

a

a b c

(shorthand)−−−−−−−→∗aabc hash−−→ 03376

label l h(l)

∗ 0
a 3
b 7
c 6
e 4

Note: labels may be strings of arbitrary length!

Token index: bag of hashed tokens
I(T) = {03003, 03037, 03376, 03760, 03600, 33004, 33047,

33470, 33700, 37000, 36000, 34000, 37000}

Intuition: similar trees have similar token indexes.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 8 / 43

Binary Branches

Binary Tree

In a binary tree

each node has at most two children;
left child and right child are distinguished:
a node can have a right child without having a left child;

Notation: TB = (N,El ,Er)

TB denotes a binary tree
N are the nodes of the binary tree
El and Er are the edges to the left and right children, respectively

Full binary tree:

binary tree
each node has exactly zero or two children.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 9 / 43

Binary Branches

Example: Binary Tree

Two different binary trees: TB = (N,El ,Er)

TB1 = ({a, b, c, d , e, f , g}, {(a, b), (b, c), (d , e), (e, f)}, {(a, d), (e, g)})
TB2 = ({a, b, c, d , e, f , g}, {(a, b), (b, c), (e, f)}, {(a, d), (d , e), (e, g)})

a

b

c

d

e

f g

a

b

c

d

e

f g

TB1 TB2

̸=

A full binary tree:
a

b

c h

d

e

f g

i

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 10 / 43

Binary Branches

Binary Representation of a Tree

Binary tree transformation:

(i) link all neighboring siblings in a tree with edges
(ii) delete all parent-child edges except the edge to the first child

Transformation maintains

label information
structure information

Original tree can be reconstructed from the binary tree:

a left edge represents a parent-child relationships in the original tree
a right edge represents a right-sibling relationship in the original tree

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 11 / 43

Binary Branches

Example: Binary Tree Transformation

Represent tree T as a binary tree:

T
a

b

c d

b

c d

e

→ binary representation of T

a

b

c

d

b

c

d

e

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 12 / 43

Binary Branches

Normalized Binary Tree Representation

We extend the binary tree with null nodes ϵ as follows:

a null node for each missing left child of a non-null node
a null node for each missing right child of a non-null node

Note: Leaf nodes get two null-children.

The resulting normalized binary representation

is a full binary tree
all non-null nodes have two children
all leaves are null nodes (and all null nodes are leaves)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 13 / 43

Binary Branches

Example: Normalized Binary Tree

Transforming T to the normalized binary tree B(T):

a

b

c d

b

c d

e

a

b

c

ϵ d

ϵ ϵ

b

c

ϵ d

ϵ ϵ

e

ϵ ϵ

ϵ

T B(T)→

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 14 / 43

Binary Branches

Binary Branch

A binary branch BiB(v) is

a subtree of the normalized binary tree B(T)
consisting of a non-null node v and its two children

Example:
BiB(a) = ({a, b, ϵ}, {(a, b)}, {(a, ϵ)})
BiB(d) = ({d , ϵ1, ϵ2}, {(d , ϵ1)}, {(d , ϵ2)}) 1

a

b

c

ϵ d

ϵ ϵ

b

c

ϵ d

ϵ1 ϵ2

e

ϵ ϵ

ϵ

1Although the two null nodes have identical labels (ϵ), they are different nodes. We
emphasize this by showing their IDs in subscript.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 15 / 43

Binary Branches

Binary Branches of Trees and Datasets

Binary branches can be serialized as label tuples:

BiB(v) = ({v, a, b}, {(v, a)}, {(v, b)}) → λ(v) ◦ λ(a) ◦ λ(b)
Binary branch profile and index:

Pbb(T) is the set of all binary branches of T
Ibb(T) is the multiset of all binary branch label tuples of T

Note:

nodes are unique in the tree, thus binary branches are unique
labels are not unique, thus the label tuples are not unique

Binary branch distance: The binary branch distance between two
trees T1 and T2 is defined as:

δbb(T1,T2) = |Ibb(T1) ⊎ Ibb(T2)| − 2|Ibb(T1) C Ibb(T2)|

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 16 / 43

Binary Branches

Example: Binary Branches and Label Tuples

a

b

c1

ϵ d3

ϵ ϵ

b

c4

ϵ d6

ϵ ϵ

e

ϵ ϵ

ϵ

a

b

c

ϵ d

ϵ b

e

ϵ ϵ

ϵ

c

ϵ d

ϵ e

ϵ ϵ

ϵ

T1 T2

BiB(c1) ̸= BiB(c4):

BiB(c1) = ({c1, ϵ2, d3}, {(c1, ϵ2)}, {(c1, d3)})
BiB(c4) = ({c4, ϵ5, d6}, {(c4, ϵ5)}, {(c4, d6)})

Serialization of both, BiB(c1) and BiB(c2), is identical: ’cϵd ’

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 17 / 43

Binary Branches

Example: Binary Branch Distance

a

b

c

ϵ d

ϵ ϵ

b

c

ϵ d

ϵ ϵ

e

ϵ ϵ

ϵ

a

b

c

ϵ d

ϵ b

e

ϵ ϵ

ϵ

c

ϵ d

ϵ e

ϵ ϵ

ϵ

T1 T2

Ibb(T1) = {abϵ, bcb, cϵd , dϵϵ, bce, cϵd , dϵϵ, eϵϵ}
Ibb(T2) = {abϵ, bcc, cϵd , dϵb, beϵ, eϵϵ, cϵd , dϵe, eϵϵ}
δbb(T1,T2) = 17− 2 · 4 = 9

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 18 / 43

Binary Branches

Lower Bound Theorem

Theorem (Lower Bound)

Let T1 and T2 be two trees. If the tree edit distance between T1 and T2 is
δt(T1,T2), then the binary branch distance between them satisfies

δbb(T1,T2) ≤ 5× δt(T1,T2).

Proof (Sketch — Full Proof in [YKT05]).

Each node v appears in at most two binary branches.

Rename: Renaming a node causes at most two binary branches in
each tree to mismatch. The sum is 4.

Similar rational for insert and its complementary operation delete (at
most 5 binary branches mismatch).

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 19 / 43

Binary Branches

Proof Sketch: Illustration for Rename

transform T1 to T2: ren(c , x)
a

b c

e f

g

a

b x

e f

g

binary trees B(T1) and B(T2)
a

b

ϵ c

e

ϵ f

ϵ ϵ

g

ϵ ϵ

ϵ

a

b

ϵ x

e

ϵ f

ϵ ϵ

g

ϵ ϵ

ϵ

Two binary branches (bϵc, ceg) exist only in B(T1)

Two binary branches (bϵx , xeg) exist only in B(T2)

δt(T1,T2) = 1 (1 rename)

δbb(T1,T2) = 4 (4 binary branches different)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 20 / 43

Binary Branches

Proof Sketch: Illustration for Insert

transform T1 to T2: ins(x , a, 2, 2)
a

b e f g

a

b x

e f

g

binary trees B(T1) and B(T2)
a

b

ϵ e

ϵ f

ϵ g

ϵ ϵ

ϵ

a

b

ϵ x

e

ϵ f

ϵ ϵ

g

ϵ ϵ

ϵ

Two binary branches (bϵe, f ϵg) exist only in B(T1)

Tree binary branches (bϵx , f ϵϵ, xeg) exist only in B(T2)

δt(T1,T2) = 1 (1 insertion)

δbb(T1,T2) = 5 (5 binary branches different)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 21 / 43

Binary Branches

Proof Sketch

In general it can be shown that

Rename changes at most 4 binary branches
Insert changes at most 5 binary branches
Delete changes at most 5 binary branches

Each edit operation changes at most 5 binary branches, thus

δbb(T1,T2) ≤ 5× δt(T1,T2).

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 22 / 43

Binary Branches

Complexity: Binary Branch Distance

Generating the binary branches: O(n) time and space
(n = max{|T1|, |T2|})

the binary branches are formed in a single traversal of the tree
for each node of a tree a single binary branch is formed

Computing the distance: O(n log n) time and O(n) space

sort binary branch indexes to compute intersection: O(n log n)
alternative: average case O(n) runtime complexity

1. build hash map for index Ibb(T2)
2. probe label tuples of Ibb(T1) to compute size of intersection

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 23 / 43

pq-Grams

pq-Grams

The shape of a pq-gram (p=2, q=3):
•
•

• • •

stem

base

anchor node

p nodes (anchor node and p−1 ancestors) form the stem

q nodes (q consecutive children of the anchor node) form the base

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 24 / 43

pq-Grams

pq-Extended Tree

Problem: How can we split the following tree T into 2, 3-grams?

a

b c

d e

Solution: Extend tree T with dummy nodes (•):
p−1 ancestors to the root node
q−1 children before the first and after the last child of each non-leaf
q children for each leaf

The result is the pq-extened tree Tpq.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 25 / 43

pq-Grams

Example: Extended Tree

An example tree T and its extended tree Tpq (p=2, q=3):

a

b c

d e

T

•
a

• • b

• • •
c

• • d

• • •
e

• • •
• •

• •

2, 3-extended tree T 2,3

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 26 / 43

pq-Grams

Definition: pq-Gram [ABG05]

Definition (pq-Gram)

Let T be a tree, Tp,q the respective extended tree, p > 0, q > 0. A
subtree of Tp,q is a pq-gram g of T iff

(a) g has q leaf nodes and p non-leaf nodes,

(b) all leaf nodes of g are children of a single node a ∈ N(g) with fanout
q, called the anchor node,

(c) the leaf nodes of g are consecutive siblings in Tp,q.

Stem: anchor node and its ancestors in the pq-gram.

Base: children of the anchor node in the pq-gram.

Definition (pq-Gram Profile)

The pq-gram profile, PT, of a tree T is the set of all its pq-grams.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 27 / 43

pq-Grams

Example: Systematically Split Tree

pq-Gram: small subtree with stem and base
Example: p = 2, q = 3

Systematically split tree into pq-grams

pq-Gram profile: set of all pq-grams of a tree.

•
•

• • •

stem

base

anchor node

a

a

e b

b c

∗

stem

base

∗
a

∗ ∗ a

∗
a

∗ a b

∗
a

a b c

∗
a

b c ∗

∗
a

c ∗ ∗
a

a

∗ ∗ e

a

a

∗ e b

a

a

e b ∗

a

a

b ∗ ∗

a

e

∗ ∗ ∗
a

b

∗ ∗ ∗

a

b

∗ ∗ ∗

a

c

∗ ∗ ∗

P(T)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 28 / 43

pq-Grams

Label Tuples

Linear encoding of a pq-gram g with anchor node vp:
(traverse pq-gram in preorder)

v1

...

vp

vp+1 ... vp+q

= (v1, . . . , vp, vp+1, . . . , vp+q)

Label tuple: tuple of the pq-gram’s node labels

λ(g) = (λ(v1), . . . , λ(vp+q))

for the pq-gram g = (v1, . . . , vp+q).

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 29 / 43

pq-Grams

pq-Gram Index

Definition (pq-Gram Index)

Let T be a tree with profile PT, p>0, q>0. The pq-gram index, I, of
tree T is the bag of all label tuples of T,

I(T) =
⊎

g∈PT

λ(g)

Note:

pq-grams are unique within a tree
but: different pq-grams may yield identical label tuples
thus the pq-gram index may contain duplicates

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 30 / 43

pq-Grams

Size of the pq-Gram Index

Theorem (Size of the pq-Gram Index)

Let T be a tree of size n = l + i with l leaves and i non-leaves. The size of
the pq-gram index of T is linear in the tree size:

|Ipq(T)| = 2l + qi − 1 = O(n)

Proof.

1. We count all pq-grams whose leftmost leaf is a dummy node: Each
leaf is the anchor node of exactly one pq-gram whose leftmost leaf is a
dummy node, giving l pq-grams. Each non-leaf is the anchor of q − 1
pq-grams whose leftmost leaf is a dummy, giving i(q − 1) pq-grams.

2. We count all pq-grams whose leftmost leaf is not a dummy node:
Each node of the tree except the root is the leftmost leaf of exactly
one pq-gram, giving l + i − 1 pq-grams.

Overall number of pq-grams: l + i(q − 1) + (l + i − 1) = 2l + qi − 1.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 31 / 43

pq-Grams

The pq-Gram Distance

Definition (pq-Gram Distance)

The pq-gram distance between two trees, T and T′, is defined as

δg (T,T
′) = |I(T) ⊎ I(T′)| − 2|I(T) C I(T′)|

Metric normalization to [0..1]: δ′g (T,T
′) = δg (T,T′)

|I(T)⊎I(T′)|−|I(T)CI(T′)|
Pseudo-metric properties hold for normalization [ABG10]:

✓ self-identity: x = y ̸⇐ ⇒ δg (x , y) = 0
✓ symmetry: δg (x , y) = δg (y , x)
✓ triangle inequality: δg (x , z) ≤ δg (x , y) + δg (y , z)

Different trees may have identical indexes:

a

b

c

b

a

b b

c

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 32 / 43

pq-Grams

Motivation: Unit Cost Model Not Always Intuitive

a

b c

d e

h i

f

a

b c

d e

h i k

f g

a

b d h i k f g

δt = 2 δt = 2

Unit cost edit distance:

no difference between leaves and non-leaves
may lead to non-intuitive results

Conclusion: Non-leaves should have more weight than leaves.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 33 / 43

pq-Grams

Fanout Weighted Tree Edit Distance

Definition (Fanout Weighted Tree Edit Distance)

Let T and T′ be two trees, w ∈ N(T) a node with fanout f , w′ ∈ N(T′) a
node with fanout f ′, c > 0 a constant. The fanout weighted tree edit
distance, δf = (T,T′), between T and T′ is defined as the tree edit
distance with the following costs for the edit operations:

Delete: α(w → ϵ) = f + c

Insert: α(ϵ → w′) = f ′ + c

Rename: α(w → w′) = (f + f ′)/2 + c

Cost of changing a non-leaf node: proportional to its fanout.

Cost of changing a leaf node: constant c .

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 34 / 43

pq-Grams

Example: Fanout-Weighted Tree Edit Distance

Fanout-Weighted Tree Edit Distance:

leaf changes have small cost (c = 1 in the example)
non-leaf changes cost proportional to the node fanout

a

b c

d e

h i

f

a

b c

d e

h i k

f g

a

b d h i k f g

δt = 2
δf = 2

δt = 2
δf = 9

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 35 / 43

pq-Grams

pq-Gram Distance Lower Bound

Theorem

Let p = 1 and c ≥ max(2q − 1, 2) be the cost of changing a leaf node.
The pq-gram distance provides a lower bound for the fanout weighted tree
edit distance, i.e., for any two trees, T and T′,

δg (T,T
′)

2
≤ δf (T,T

′).

Proof.

See [ABG10] (ACM Transactions on Database Systems).

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 36 / 43

pq-Grams

Size of the pq-Gram Index

pq-Gram index size: linear in the tree size

Experiment:

compute pq-gram index for trees with different number of nodes
compare tree and index size

 0

 200

 400

 600

 800

 1000

 1200

 0 1e+07 2e+07

s
iz

e
 [

M
B

]

number of nodes

tree
3,3-gram index
1,2-gram index

[Trees created with xmlgen.]

Why is the pq-gram index smaller
than the tree?

hash values are smaller than
labels

duplicate pq-grams of a tree are
stored only once

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 37 / 43

pq-Grams

Sensitivity to Structure Change — Leaf

Cost of leaf change → depends only on q

Experiment:

delete leaf nodes
measure normalized pq-gram distance

vary p vary q

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

n
o

rm
 p

q
-g

ra
m

 d
is

ta
n

c
e

number of deletions

4,3-grams
3,3-grams
2,3-grams
1,3-grams

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20
n

o
rm

 p
q

-g
ra

m
 d

is
ta

n
c
e

number of deletions

2,4-grams
2,3-grams
2,2-grams
2,1-grams

(Artificial tree with 144 nodes, 102 leaves, fanout 2–6 and depth 6. Average over 100 runs.)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 38 / 43

pq-Grams

Sensitivity to Structure Change — Non-Leaf

Cost for non-leaf change → controlled by p

Experiment:

delete non-leaf nodes
measure normalized pq-gram distance

vary p vary q

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

n
o

rm
 p

q
-g

ra
m

 d
is

ta
n

c
e

number of deletions

4,3-grams
3,3-grams
2,3-grams
1,3-grams

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20
n

o
rm

 p
q

-g
ra

m
 d

is
ta

n
c
e

number of deletions

2,4-grams
2,3-grams
2,2-grams
2,1-grams

(Artificial tree with 144 nodes, 102 leaves, fanout 2–6 and depth 6. Average over 100 runs.)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 39 / 43

pq-Grams

Influence of p and q on Scalability

Scalability (almost) independent of p and q.

Experiment: For pair of trees

compute pq-gram distance for varying p and q
vary tree size: up 106 nodes
measure wall clock time

 0

 5

 10

 15

 20

 25

 0 100000 200000 300000 400000 500000

ti
m

e
 [

s
e

c
]

number of nodes (n)

3,4-gram dist
2,3-gram dist
1,2-gram dist

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 40 / 43

pq-Grams

Scalability to Large Trees

pq-gram distance → scalable to large trees

compare with edit distance

Experiment: For pair of trees

compute tree edit distance and pq-gram distance
vary tree size: up 5× 105 nodes
measure wall clock time

 0

 100

 200

 300

 400

 500

 600

 0 100000 200000 300000 400000 500000

tim
e

[s
ec

]

number of nodes (n)

edit dist
2,3-gram dist

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 41 / 43

pq-Grams

pq-Grams vs. other Edit Distance Approximations

Effectiveness: pq-grams outperform all other approximations

Experiment: two sets of address trees (299 and 302 trees)

compute distances between all tree pairs

find matches (symmetric nearest neighbor)

Distance Correct Recall Precision f-Measure Runtime

fanout edit dist 259 86.6% 98.5% 0.922 19 min
unit edit dist 247 82.6% 96.5% 0.890 14 min

node intersection 197 65.9% 93.8% 0.774 4.3s

p,q-grams 236 78.9% 98.7% 0.877 8.1s

tree-embedding 206 68.9% 96.3% 0.803 7.1s
binary branch 193 64.5% 93.2% 0.763 7.4s
bottom-up 148 49.6% 92.5% 0.645 67.0s

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 42 / 43

Conclusion

Summary

Binary Branch Distance

lower bound of the unit cost tree edit distance
trees are split into binary branches (small subgraphs)
similar trees have many common binary branches
complexity O(n log n) time and (n) space

pq-Gram Distance

lower bound for the fanout weighted tree edit distance
trees are split into pq-grams (small subtrees)
similar trees have many common pq-grams
complexity O(n log n) time and O(n) space

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 43 / 43

Nikolaus Augsten, Michael Böhlen, and Johann Gamper.
Approximate matching of hierarchical data using pq-grams.
In Proceedings of the International Conference on Very Large
Databases (VLDB), pages 301–312, Trondheim, Norway, September
2005. ACM Press.

Nikolaus Augsten, Michael Böhlen, and Johann Gamper.
The pq-gram distance between ordered labeled trees.
ACM Transactions on Database Systems (TODS), 35(1):1–36, 2010.

Richard M. Karp and Michael O. Rabin.
Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, March
1987.

Rui Yang, Panos Kalnis, and Anthony K. H. Tung.
Similarity evaluation on tree-structured data.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 754–765, Baltimore, Maryland, USA,
June 2005. ACM Press.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 43 / 43

