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Token-based Tree Distances

Tokens for Trees — Intuition

@ g-Grams for strings:
o split string into substrings (g-grams) of length g
e strings with many common substrings are similar
@ lokens for trees:

o split tree into small subunits (tokens) of the same shape
e tokens may be individual nodes, subtrees, or subgraphs
e trees with many common tokens are similar

@ Example: the so-called pg-gram tokens are besom-shaped subtrees

with p + g nodes
Vi
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Token-based Tree Distances

Token Profile and Label Tuples

@ Token profile P(T): set of all tokens of tree T
e a token may be a subtree or a subgraph of the tree
o the token profile P(T) of a tree T is the set of all its tokens

@ A linear encoding of a token traverses all its nodes in preorder:
Vi

Vp — (V]_,...,Vp, Vp_|_]_,...,Vp+q)
/ N

Vp+1 - - - Vptgq

@ Label tuple A\(t): tuple of the nodes labels A(v;) of token
t = (vi,v2,...,Vk) in preorder:

A(t) = (A(vi), A(v2), ..., A(vk))
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Token-based Tree Distances

Token Index

Definition (Token Index)

Let P(T) be a token profile of tree T. The token index, Z, of tree T is the
bag of all label tuples of T,

(M) = [H Ae)

gePT

@ Note:

e tokens consist of nodes and are unique within a tree
e but: different tokens may vyield identical label tuples
e thus the token index may contain duplicates
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Token-based Tree Distances

Token-Based Distance

Definition (Token-Based Distance)

The token-based distance between two trees, T and T/, with token indexes
Z(T) and Z(T"), respectively, is defined as

O(T, T') = [Z(T) e Z(T")| — 2|Z(T) mZ(T")|

o Metric normalization to [0..1]: 6 (T, T') = |I(T)L+JI('I(E§)(|-E|-;()T)P’HI(T/)|

@ Pseudo-metric properties hold for normalization [ABG10]:
self-identity: x = y#= = d4(x,y) =0

symmetry: dg(x,y) = dg(y, x)
triangle inequality: dg(x,2z) < dg(x,y) + (v, 2)

@ Different trees may have identical indexes.
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Token-based Tree Distances

Storing the Token Index Efficiently

@ Problem: How to store node labels efficiently?

e Long labels: large storage overhead
e Varying label length: in a relational database, the inefficient VARCHAR
type must be used instead of the efficient CHAR type

@ Solution: Hashing

e compute fingerprint hash for labels
e store concatenation of the hashed labels

@ Fingerprint hash function (e.g., Karp-Rabin [KR87]):

® maps a string s to a hash value h(s)
o h(s) is of fixed length
o h(s) is unique with high probability
(for two different strings s; # s, h(sy) # h(sp) with high probability)
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Token-based Tree Distances

Overview: Token Index

@ Token profile: (so-called pg-grams in the example, p =2, q = 3)

* * * * x a a a a a a a a

I I I I I I I I I I | | |
a a a a a a a a a e b b c

/1N /1IN / 1\ /1IN /1IN /1N /1N /1\ /1IN /1N VAR VAR /1N
* x a xap apc pcCcx C*xx*x x*x €& x€eph € ph*x bk ok *x Kk ok ok k ok ok ok ok ok ok ok

@ Hashing: map tokens to integers:
label | | h

x

N—

horthand
(shortha %*aabc%haSh 03376

ES

| ..

3 serialize
/ 1\ 7 (*73737 ba C)
abpc

O N W o/

;
Note: labels may be strings of arbitrary length!

@ Token index: bag of hashed tokens
Z(T) = 4{03003,03037,03376,03760,03600, 33004, 33047,

33470, 33700, 37000, 36000, 34000, 37000}

Intuition: similar trees have similar token indexes. '
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Binary Branches

Binary Tree

@ In a binary tree

e each node has at most two children;
e left child and right child are distinguished:
a node can have a right child without having a left child;

e Notation: Tg = (N, E, E,)
e T denotes a binary tree

e N are the nodes of the binary tree
e E; and E, are the edges to the left and right children, respectively

@ Full binary tree:

e binary tree
e each node has exactly zero or two children.
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Binary Branches
Example: Binary Tree

e Two different binary trees: Tg = (N, Ej, £,)

TB]. — ({a7 b7 C? d7 e7 f7g}7 {(a? b)’(b7 C)’(d7e)7(e7 f)}7 {(37 d)’(e7g)})
Ter = ({a,b,c,d, e, f, g}, {(a,b),(b,c),(e,f)}, {(a.d).(d,e) (e g)})

Tp1 d Tpgo a
/ N\ / N\
b d +* b d
/ / / \
C e C e
/ \ / N\
f & f &
@ A full binary tree:
a
VRN
b d
/A / N\
c h € |
/ \
f &
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Binary Branches

Binary Representation of a Tree

@ Binary tree transformation:

(i) link all neighboring siblings in a tree with edges

(ii) delete all parent-child edges except the edge to the first child
@ Transformation maintains

e label information
e structure information

@ Original tree can be reconstructed from the binary tree:

e a left edge represents a parent-child relationships in the original tree
e a right edge represents a right-sibling relationship in the original tree
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Binary Branches

Example: Binary Tree Transformation

@ Represent tree T as a binary tree:

T — binary representation of T
a
| a
b — b T~ e /
/A / A\ b
c d ¢ d RN
C b
\ /\
d ¢ e
\
d
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Binary Branches

Normalized Binary Tree Representation

@ We extend the binary tree with null nodes ¢ as follows:
e a null node for each missing left child of a non-null node
e a null node for each missing right child of a non-null node
@ Note: Leaf nodes get two null-children.
@ The resulting normalized binary representation

e is a full binary tree
e all non-null nodes have two children
o all leaves are null nodes (and all null nodes are leaves)
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Binary Branches

Example: Normalized Binary Tree

@ Transforming T to the normalized binary tree B(T):

T — B(T)
a a
b/['j\e b/ \6
¢ a4 N,
/N / N\
€ d C €
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Binary Branches
Binary Branch

@ A binary branch BiB(v) is

o a subtree of the normalized binary tree B(T)
e consisting of a non-null node v and its two children

@ Example:

BiB(a) = ({a, b,¢},{(a, b)},{(a,€)})
BiB(d) = (1d, €1, €2, {(d e1)}, {(d.e2)})

/\
/\

/\ /\

/ \ / N\ / \
€ € € qd € €

'Although the two null nodes have identical labels (¢), they are different nodes. We

emphasize this by showing their IDs in subscript.
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Binary Branches

Binary Branches of Trees and Datasets

@ Binary branches can be serialized as label tuples:
o BiB(v) = ({v,a,b},{(v,a)}, {(v,b)}) = A(v) o A(a) o A(b)
@ Binary branch profile and index:

o Ppp(T) is the set of all binary branches of T
o Zpp(T) is the multiset of all binary branch label tuples of T

@ Note:

e nodes are unique in the tree, thus binary branches are unique
e labels are not unique, thus the label tuples are not unique

@ Binary branch distance: The binary branch distance between two
trees T1 and T» is defined as:

Opb(T1,T2) = |Zpp(T1) W Zpp(T2)| — 2|Zpp(T1) A Zpp(T2)|
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Binary Branches

Example: Binary Branches and Label Tuples

Tq T>
/a\ ’
C1 b C C
2 7N \ \
€ d3 C4 € 6/ d 6/ d
/N /D / N\ RN RN
€ €€ dge € e b e e
6/ \6 / \ / \
e € € €
/ \
€ €

@ BiB(c1) # BiB(ca):
° BIB(Cl) = ({C1,€2,d3},{(C1,€2)}7{(C17d3)})
Q BIB(C4) = ({C4,€5,d6},{(C4,€5)}7{(C47d6)})

@ Serialization of both, BiB(c1) and BiB(c), is identical: 'ced’
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Binary Branches

Example: Binary Branch Distance

Tl 7_2
/ \ /a\
b b €
/N /7 \ /C\ /C\
€ d Cc € € d € d
/ \ / N\ / \ R RN
€ € € d € € € b € e
6/\6 / N\ / \
e € € €
/ \
€ €

Tpp(T1) = {abe, beb, ced, dee, bee, ced, dee, eec}
Tpp(T2) = {abe, bee, ced, deb, bee, ece, ced, dee, ece}
5bb(T1; T2) —17—-2-4 =9
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Binary Branches
Lower Bound Theorem

Theorem (Lower Bound)

Let T1 and T» be two trees. If the tree edit distance between T1 and T» is
0t+(T1, T2), then the binary branch distance between them satisfies

dpb(T1, T2) <5 % §:(T1, To).

Proof (Sketch — Full Proof in [YKTO05]).

@ Each node v appears in at most two binary branches.

@ Rename: Renaming a node causes at most two binary branches in
each tree to mismatch. The sum is 4.

@ Similar rational for insert and its complementary operation delete (at
most 5 binary branches mismatch).

[]

y
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Binary Branches

Proof Sketch: lllustration for Rename

@ transform T; to To: ren(c, x)

a a
VRN VRN
b ¢ & b x 8
/ \ / N\
e f e f
@ binary trees B(T1) and B(T>»)
a a
b/ \6 b/ \6
VRN VRN
€ C € X
RN RN
e g € g
/ \ / \ / N\ / \
€ f € € € f € €
/ A\ / A\
€ € € €

Two binary branches (bec, ceg) exist only in B(T1)
Two binary branches (bex, xeg) exist only in B(T>)
0t(T1,T2) =1 (1 rename)

dpp(T1, T2) = 4 (4 binary branches different)
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Binary Branches

Proof Sketch: lllustration for Insert

e transform T; to Ta: ins(x, a,2,2)

a
NN IR
b e f &b x &
/ \
e f

@ binary trees B(T1) and B(T>)
a a
b/ \e b/ \6

7/ \ N\

€ e € X
/7 N\ /7 N\
€ f e g
/ N\ / N\ / \
€ g € f € €
/7 '\ / \
€ € € €

@ Two binary branches (bee, feg) exist only in B(Tq)

@ Tree binary branches (bex, fee, xeg) exist only in B(T»)
@ 0:(T1,T2) =1 (1 insertion)
@ 0pp(T1, T2) =5 (5 binary branches different)
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Binary Branches

Proof Sketch

@ In general it can be shown that

e Rename changes at most 4 binary branches
e Insert changes at most 5 binary branches
e Delete changes at most 5 binary branches

@ Each edit operation changes at most 5 binary branches, thus

dpb(T1, T2) <5 x 6:(T1, To).
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Binary Branches

Complexity: Binary Branch Distance

@ Generating the binary branches: O(n) time and space
(n=max{|T1],|T2]})
e the binary branches are formed in a single traversal of the tree
e for each node of a tree a single binary branch is formed
@ Computing the distance: O(nlog n) time and O(n) space

e sort binary branch indexes to compute intersection: O(nlog n)
o alternative: average case O(n) runtime complexity

1. build hash map for index Zpp( T2)
2. probe label tuples of Zpp(T1) to compute size of intersection
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pg-Grams
pg-Grams

@ The shape of a pg-gram (p=2, g=3):
o
| ]stem

[
SN
e o e Aanchor node

base

@ p nodes (anchor node and p—1 ancestors) form the stem

@ g nodes (g consecutive children of the anchor node) form the base

Augsten (Univ. Salzburg) Similarity Search WS 2025/26



pg-Extended Tree

@ Problem: How can we split the foIIowing tree T into 2, 3-grams?

/\
/\

@ Solution: Extend tree T with dummy nodes (e):

e p—1 ancestors to the root node
e g—1 children before the first and after the last child of each non-leaf
e g children for each leaf

@ The result is the pg-extened tree TPY,
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pg-Grams
Example: Extended Tree

@ An example tree T and its extended tree TP9 (p=2, g=3):

T 2, 3-extended tree T23
a °
/ \ |
b ¢ a
d/\e b/// \Coo
VAR 7N
e o0 o o e o0
/1IN /1IN
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Definition: pg-Gram [ABGO5]

Definition (pg-Gram)

Let T be a tree, TP9 the respective extended tree, p >0, g > 0. A
subtree of TP9 is a pg-gram g of T iff

(a) g has g leaf nodes and p non-leaf nodes,

(b) all leaf nodes of g are children of a single node a € N(g) with fanout
q, called the anchor node,

(c) the leaf nodes of g are consecutive siblings in TP:9.

@ Stem: anchor node and its ancestors in the pg-gram.

@ Base: children of the anchor node in the pg-gram.

Definition (pg-Gram Profile)

The pg-gram profile, Py, of a tree T is the set of all its pg-grams.
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pg-Grams

Example: Systematically Split Tree

@ pg-Gram: small subtree with stem and base

o
Example: p=2, g=3 | ] stem
o
@ Systematically split tree into pg-grams o N
. ° ° ° anchor node
@ pg-Gram profile: set of all pg-grams of a tree.
base
* * * ES ES
| | | | |
P(T) a a a a a
/IN O /IN O /IN N /N
* x 3 xap apc pcCx*x C* %
stem a a a a a
| | | | |
ﬂ a a a a (S
/IN O /IN O /IN O ZIN N
* x € x e p e p*x ph*k *x *x x %
b C a a a
I I |
b b c
/ 1\ / 1\ / I\
k% k) ok X ko ok X
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pg-Grams
Label Tuples

@ Linear encoding of a pg-gram g with anchor node v:

(traverse pg-gram in preorder)
Vi

Vp :(V]_’...’Vp, Vp_i_]_)...)Vp_i_q)
7/ N

Vp+1 - -+ Vptq

@ Label tuple: tuple of the pg-gram’s node labels

Ag) = (Alvi), .-, )‘(Vp+q))

for the pg-gram g = (v1,...,Vp4q).
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pg-Grams
pg-Gram Index

Definition (pg-Gram Index)

Let T be a tree with profile P, p>0, g>0. The pg-gram index, Z, of
tree T is the bag of all label tuples of T,

(M) = [H Ae)

gePT

@ Note:

@ pg-grams are unique within a tree
e but: different pg-grams may vyield identical label tuples
e thus the pg-gram index may contain duplicates
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Size of the pg-Gram Index

Theorem (Size of the pg-Gram Index)

Let T be a tree of size n = | + 1 with | leaves and i non-leaves. The size of
the pg-gram index of T is linear in the tree size:

| ZP9(T)| =214+ qgi —1 = O(n)

v

1. We count all pg-grams whose leftmost leaf is a dummy node: Each
leaf is the anchor node of exactly one pg-gram whose leftmost leaf is a
dummy node, giving | pg-grams. Each non-leaf is the anchor of g — 1
pg-grams whose leftmost leaf is a dummy, giving /(g — 1) pg-grams.

2. We count all pg-grams whose leftmost leaf is not a dummy node:
Each node of the tree except the root is the leftmost leaf of exactly

one pg-gram, giving I + 1 — 1 pg-grams.
Overall number of pg-grams: [+ i(g—1)+(/+i—1)=2/+qi—1. [

y
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The pg-Gram Distance

Definition (pg-Gram Distance)

The pg-gram distance between two trees, T and T, is defined as

0g(T, T') = |Z(T) W Z(T")| — 2|Z(T) m Z(T")|

o Metric normalization to [0..1]: (T, T') = |I(T)LﬂI("I(Eg)(|-I;’|-;()T)FﬂI(T’)|

@ Pseudo-metric properties hold for normalization [ABG10]:
v/ self-identity: x = y#= = d4(x,y) =0
v/ symmetry: dg(x,y) = 0g(y, x)
v/ triangle inequality: d5(x,z) < dg(x,y) + 0g(y, 2)

a a
/N / \

@ Different trees may have identical indexes:
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pg-Grams

Motivation: Unit Cost Model Not Always Intuitive

d d d

| =2 /\ =2 I\
b/‘C\ b//C\\ bdhi k f 8
d ef def 8

/\ /I\

h i h 1 k

@ Unit cost edit distance:

e no difference between leaves and non-leaves
e may lead to non-intuitive results

@ Conclusion: Non-leaves should have more weight than leaves.
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pg-Grams

Fanout Weighted Tree Edit Distance

Definition (Fanout Weighted Tree Edit Distance)

Let T and T’ be two trees, w € N(T) a node with fanout f, w' € N(T’) a
node with fanout f/, ¢ > 0 a constant. The fanout weighted tree edit
distance, 0 = (T, T’), between T and T’ is defined as the tree edit
distance with the following costs for the edit operations:

@ Delete: a(w —¢)=f+c
o Insert: a(e > w)=Ff"+c
@ Rename: a(w - w')=(f+f")/2+c

@ Cost of changing a non-leaf node: proportional to its fanout.

@ Cost of changing a leaf node: constant c.
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pg-Grams

Example: Fanout-Weighted Tree Edit Distance

@ Fanout-Weighted Tree Edit Distance:

o leaf changes have small cost (¢ = 1 in the example)
e non-leaf changes cost proportional to the node fanout

; 0 = 2 ; 0 = 2 ,
T /\ =0 I\
b C b ¢ bdhi kf§&
/I\ N
d ef def 8

\ /I\

h | h 1 k
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pg-Grams
pg-Gram Distance Lower Bound

Let p=1 and ¢ > max(2q — 1,2) be the cost of changing a leaf node.
The pg-gram distance provides a lower bound for the fanout weighted tree
edit distance, i.e., for any two trees, T and T/,

%(T.T)  5(1,).

See [ABG10] (ACM Transactions on Database Systems). ]
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pg-Grams

Size of the pg-Gram Index

@ pg-Gram index size: linear in the tree size
@ Experiment:

e compute pg-gram index for trees with different number of nodes
e compare tree and index size

1200 .
tree ——
3,3- index . _ .

1000 1 o index < Why is the pg-gram index smaller
g 800 than the tree?
= 600
5 oo | @ hash values are smaller than

200 F A X labels

___________________________________________________________________ )
e e — - ° ' _
. gy .~ duplicate pg-grams of a tree are
number of nodes stored only once

[Trees created with xmlgen.]
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pg-Grams

Sensitivity to Structure Change — Leaf

@ Cost of leaf change — depends only on ¢

@ Experiment:

o delete leaf nodes
e measure normalized pg-gram distance

number of deletions

Augsten (Univ. Salzburg) Similarity Search

vary p vary q
1 w w w w 1 w w w
4,3-grams —— J4-grams ——

3 3,3-grams —x- 3 ,3-grams -
< 08} 23-grams -*- S 08| 22-grams %
k7 1,3-grams ~& ® ,1-grams o
© o] |
e 06 2 06
o ©
(@) (@)
S 04 & 04
o o
£ E
o) 0.2 5 0.2
c c

0 L= I ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0

0 2 4 6 8 10 12 14 16 18 20

number of deletions

(Artificial tree with 144 nodes, 102 leaves, fanout 2—6 and depth 6. Average over 100 runs.)
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pg-Grams

Sensitivity to Structure Change — Non-Leaf

@ Cost for non-leaf change — controlled by p

@ Experiment:

e delete non-leaf nodes
e measure normalized pg-gram distance

vary p vary g
1 4,3-grams —— 1

3 3,3-grams - o

S 0.8 r 2,3-grams -x- e f S 0.8

k7 1,3-grams S k7]

© 0.6 K © 06 |

% X * - %

g 0.4 o =S & 047

o ’ EI""'El"“E o

£ g N=R £

S 0.2 /fff . = < 02t

[ Ei C

0O 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

number of deletions number of deletions

(Artificial tree with 144 nodes, 102 leaves, fanout 2—6 and depth 6. Average over 100 runs.)
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pg-Grams

Influence of p and g on Scalability

@ Scalability (almost) independent of p and gq.
@ Experiment: For pair of trees

e compute pg-gram distance for varying p and g
o vary tree size: up 10° nodes
e measure wall clock time

25 T . T T T T
3,4-gram dist ——
2,3-gram dist X
1,2-gram dist -

20 .
o 15 ¢ .
(]

L,
(O] X
S} ’ .
5 L i
O -~ 1 1 1 1 1
0 100000 200000 300000 400000 500000

number of nodes (n)
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pg-Grams

Scalability to Large Trees

@ pg-gram distance — scalable to large trees

@ compare with edit distance

@ Experiment: For pair of trees

e compute tree edit distance and pg-gram distance
e vary tree size: up 5 x 10° nodes

e measure wall clock time
600

" edit dist ————
2,3-gram dist - S
500 | _

400 -

300 r .

time [sec]

200 .

100 + _

O »»»»»»» se--== 1 B L ] L 1 1
0 100000 200000 300000 400000 500000

number of nodes (Nn)
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pg-Grams

pg-Grams vs. other Edit Distance Approximations

@ compute distances between all tree pairs

@ find matches (symmetric nearest neighbor)

Effectiveness: pg-grams outperform all other approximations I

Experiment: two sets of address trees (299 and 302 trees)

Distance Correct Recall Precision f-Measure Runtime
fanout edit dist 259 86.6%  98.5% 0.922 19 min
unit edit dist 247 82.6% 96.5% 0.890 14 min
node intersection 197 65.9%  93.8% 0.774 4.3s
p,g-grams 236 78.9%  98.7% 0.877 8.1s
tree-embedding 206 68.9% 96.3% 0.803 7.1s
binary branch 193  64.5% 93.2% 0.763 7.4s
bottom-up 148 49.6%  92.5% 0.645 67.0s
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Conclusion

Summary

@ Binary Branch Distance
o lower bound of the unit cost tree edit distance
o trees are split into binary branches (small subgraphs)
e similar trees have many common binary branches
o complexity O(nlogn) time and (n) space
@ pg-Gram Distance
e lower bound for the fanout weighted tree edit distance
o trees are split into pg-grams (small subtrees)
e similar trees have many common pg-grams
o complexity O(nlogn) time and O(n) space
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