Similarity Search

Token-Based Tree Distances

Nikolaus Augsten

nikolaus.augsten@plus.ac.at
Department of Computer Science
University of Salzburg

ly database
research group

https://dbresearch.uni-salzburg.at

WS 2025/26

Version November 6, 2025

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Token-based Tree Distances

Tokens for Trees — Intuition

o g-Grams for strings:
o split string into substrings (g-grams) of length ¢
e strings with many common substrings are similar
@ Tokens for trees:
o split tree into small subunits (tokens) of the same shape
o tokens may be individual nodes, subtrees, or subgraphs
o trees with many common tokens are similar
@ Example: the so-called pg-gram tokens are besom-shaped subtrees
with p + g nodes
Vi
\
\

Vp

Vp+l - -+ Vpigq

Augsten (Univ. Salzburg)

Similarity Search WS 2025/26

1/43

QOutline

© Token-based Tree Distances

© Binary Branches

© pg-Grams

@ Conclusion

Augsten (Univ. Salzburg)

Similarity Search WS 2025/26

Token-based Tree Distances

Token Profile and Label Tuples

@ Token profile P(T): set of all tokens of tree T

e a token may be a subtree or a subgraph of the tree
o the token profile P(T) of a tree T is the set of all its tokens

@ A linear encoding of a token traverses all its nodes in preorder:
Vi

Vp = (Vla"'avp’ VP+15"'7VP+C])

Vp+l - -+ Vpigq
@ Label tuple A(t): tuple of the nodes labels A(v;) of token

t = (v1,V2,...,Vvk) in preorder:

A(t) = (A(v1), A(v2), - - s A(vk))

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Token-based Tree Distances

Token Index

Token-based Tree Distances

\ Token-Based Distance

Definition (Token-Based Distance)

Definition (Token Index)

Let P(T) be a token profile of tree T. The token index, Z, of tree T is the
bag of all label tuples of T,

(M) = [H Me)

gePT

@ Note:

o tokens consist of nodes and are unique within a tree
o but: different tokens may yield identical label tuples
o thus the token index may contain duplicates

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Token-based Tree Distances

Storing the Token Index Efficiently

@ Problem: How to store node labels efficiently?
e Long labels: large storage overhead
e Varying label length: in a relational database, the inefficient VARCHAR
type must be used instead of the efficient CHAR type
@ Solution: Hashing
e compute fingerprint hash for labels
e store concatenation of the hashed labels
e Fingerprint hash function (e.g., Karp-Rabin [KR87]):

e maps a string s to a hash value h(s)
o h(s) is of fixed length
e h(s) is unique with high probability
(for two different strings s1 # s, h(s1) # h(s2) with high probability)

Similarity Search WS 2025/26

Augsten (Univ. Salzburg)

The token-based distance between two trees, T and T’, with token indexes
Z(T) and Z(T'), respectively, is defined as

ST, T) = |Z(T) W Z(T)| — 2|Z(T) mZ(T)|

@ Metric normalization to [0..1]: 65(T,T') = \I(T)wI(?g)ﬁT—’\TI/()T)mI(T')|

@ Pseudo-metric properties hold for normalization [ABG10]:
v/ self-identity: x = y#= = Jg(x,y) =0
v/ symmetry: dg(x,y) = 0g(y, x)
v/ triangle inequality: dg(x,z) < dg(x,y) + (v, 2)

@ Different trees may have identical indexes.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 6/43

Token-based Tree Distances

\ Overview: Token Index

o Token profile: (so-called pg-grams in the example, p = 2, g = 3)

* * * * * a a a a a a a a

| | | | | | | | | | | | |

a a a a a a a a a e b b c
/1IN /1IN VAN /IN VAN VAN /IN VAAN /1N /1IN VAR VAR VAR
¥ xa xap apc pcCcx*x C*x* xx€ xep eph*x p*x*x >k k x >k ok x ok ok x Kk ok %k

@ Hashing: map tokens to integers:

*

\ .
I/ shorthand
e seratze, (*+,a,a,b,¢) g

apc

«aabc Tl 03376

Note: labels may be strings of arbitrary length!

@ Token index: bag of hashed tokens
Z(T) = {03003,03037,03376,03760, 03600, 33004, 33047,
33470, 33700, 37000, 36000, 34000, 37000}

Intuition: similar trees have similar token indexes. '

Similarity Search WS 2025/26 8/43

Augsten (Univ. Salzburg)

Binary Branches

| Binary Tree

@ In a binary tree

o each node has at most two children;

o left child and right child are distinguished:

a node can have a right child without having a left child;

e Notation: Tg = (N, E}, E)

o Tp denotes a binary tree

o N are the nodes of the binary tree

o E; and E, are the edges to the left and right children, respectively
o Full binary tree:

o binary tree

o each node has exactly zero or two children.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Binary Branches

Binary Representation of a Tree

@ Binary tree transformation:

(i) link all neighboring siblings in a tree with edges
(ii) delete all parent-child edges except the edge to the first child

@ Transformation maintains
o label information
o structure information
@ Original tree can be reconstructed from the binary tree:

o a left edge represents a parent-child relationships in the original tree
o a right edge represents a right-sibling relationship in the original tree

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Binary Branches

Example: Binary Tree

e Two different binary trees: Tg = (N, E}, ;)

Tg1 = ({a,b,c,d,e, f, g}, {(a,b),(b,c),(d,e), (e, f)}, {(a.d).(e.g)})
TB2 = ({37 b7 <, d7 €, fvg}v {(37 b)7 (ba C)7 (67 f)}» 1’(3 d)' (d7 e)’ (e' g)}')

Tgr a T2 a
/7 N\ /7 N\
b d a b d
/ / / \
c e c e
/ N\ / N\
f 8 f 8
@ A full binary tree:
a
SN
b d
/N /N
c h e |
/ N\
f &

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Binary Branches

Example: Binary Tree Transformation

@ Represent tree T as a binary tree:

T — binary representation of T
a
\ a
b — b . %
/ N\ / N\ b
c d ¢ d VRN
c b
\ / N\
d ¢ e
\
d

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Binary Branches

Normalized Binary Tree Representation

Binary Branches

. Example: Normalized Binary Tree

o We extend the binary tree with null nodes € as follows:
e a null node for each missing left child of a non-null node
o a null node for each missing right child of a non-null node
@ Note: Leaf nodes get two null-children.
@ The resulting normalized binary representation

o is a full binary tree
o all non-null nodes have two children
o all leaves are null nodes (and all null nodes are leaves)

Similarity Search WS 2025/26

Augsten (Univ. Salzburg)

Binary Branches

- Binary Branch

@ A binary branch BiB(v) is

e a subtree of the normalized binary tree B(T)
e consisting of a non-null node v and its two children

o Example:

BiB(a) = ({a, b,¢},{(a,b)},{(a,€)})
BiB(d) = ({d, e1, €2}, {(d, e1)}, {(d, e2)}) !

b/a\e
N,
/N /N

/ \ /N / \

!Although the two null nodes have identical labels (€), they are different nodes. We

empbhasize this by showing their IDs in subscript.
Similarity Search WS 2025/26

Augsten (Univ. Salzburg)

e Transforming T to the normalized binary tree B(T):
T - B(T)

b/a\e
N,
/N /N

/N /N /N

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 14 /43

Binary Branches

 Binary Branches of Trees and Datasets

Binary branches can be serialized as label tuples:
o BiB(v) = ({v.a,b},{(v.a)},{(v,b)}) = A(v) o A(a) o A(b)
Binary branch profile and index:

o Pup(T) is the set of all binary branches of T
o Zpp(T) is the multiset of all binary branch label tuples of T

o Note:

e nodes are unique in the tree, thus binary branches are unique

e labels are not unique, thus the label tuples are not unique
Binary branch distance: The binary branch distance between two
trees T1 and T, is defined as:

Ibb(T1, T2) = |Zpp(T1) W Zpp(T2)| — 2|Zbs(T1) A Zpu(T2)|

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Binary Branches

Example: Binary Branches and Label Tuples

Binary Branches

| Example: Binary Branch Distance

Ty T2
/2\ a
b € b/ \6
(o] b c I
/N / N\ AN N\
€ d3 Ca e e/ d E/ d
/N /N / N\ A VRN
€ €€ dee € e b e e
E/ \6 / A\ /\
e € € €
/ \
€ €

e BiB(c1) # BiB(ca):
° B"B(CI) = ({Clv €2, d3}7 {(C17 62)}, {(Ch d3)})
o BiB(cs) = ({ca, €5, d6}, {(car €5)}, {(ca, do)})
e Serialization of both, BiB(c1) and BiB(c), is identical: 'ced’

Similarity Search WS 2025/26

Augsten (Univ. Salzburg)

Binary Branches

\ Lower Bound Theorem

Theorem (Lower Bound)

Let T1 and Ty be two trees. If the tree edit distance between T1 and T is
0+(T1,T2), then the binary branch distance between them satisfies

Ibp(T1, T2) <5 X 0¢(Tq, To).

Proof (Sketch — Full Proof in [YKTO05]).
@ Each node v appears in at most two binary branches.
@ Rename: Renaming a node causes at most two binary branches in
each tree to mismatch. The sum is 4.
o Similar rational for insert and its complementary operation delete (at
most 5 binary branches mismatch).

O

v

Similarity Search WS 2025/26

Augsten (Univ. Salzburg)

T1 7_2
/a\ :
b € b/ \e
C/ \b P
/N /N /C\ /C\
€ d Cc e € d € d
/N /N / N\ RN VRN
€ € € d e € € b € e
/N /N /\
€ € e € € €
/ \
€ €

Zpb(T1) = {abe, beb, ced, dee, bee, ced, dee, eee}
Zpb(T2) = {abe, bee, ced, deb, bee, ece, ced, dee, ece}
Opp(T1, T2) =17—-2-4=9

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 18 /43

Binary Branches

Proof Sketch: lllustration for Rename

e transform Ty to Ty: ren(c, x)
a a
VIR VERIRN
Cc g b X
/N / \
e f e f

binary trees B(T1) and B(T2)
a a
b/ \e b/ \e
SN /N
€ C € X
7N VAN
e g e g

b g

Two binary branches (bec, ceg) exist only in B(T1)
Two binary branches (bex, xeg) exist only in B(T2)
0+(T1,T2) =1 (1 rename)

Opp(T1, T2) = 4 (4 binary branches different)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Binary Branches

\ Proof Sketch: lllustration for Insert

e transform T; to Ta: ins(x,a,2,2)

a a
AN VRN
b/e F g b x

g
/ N\
e f
@ binary trees B(T1) and B(T»)
a a
b/ \E b/ \6
/ N\ VRN
€ e € X
7/ N\ VRN
€ f e g
/ N\ / N\ / N\
€ g € f € €
7/ N\ / N\
€ € € €

Two binary branches (bee, feg) exist only in B(T1)
Tree binary branches (bex, fee, xeg) exist only in B(T>)
0+(T1,T2) =1 (1 insertion)

dpp(T1, T2) =5 (5 binary branches different)

Augsten (Univ. Salzburg)

Similarity Search WS 2025/26

Binary Branches

Complexity: Binary Branch Distance

@ Generating the binary branches: O(n) time and space
(n = max{|T1l,[T2[})
o the binary branches are formed in a single traversal of the tree
e for each node of a tree a single binary branch is formed
e Computing the distance: O(nlog n) time and O(n) space
e sort binary branch indexes to compute intersection: O(nlog n)
o alternative: average case O(n) runtime complexity

1. build hash map for index Zy,(T2)
2. probe label tuples of Zp,(T1) to compute size of intersection

Augsten (Univ. Salzburg)

Similarity Search

Binary Branches

' Proof Sketch

@ In general it can be shown that

e Rename changes at most 4 binary branches
e Insert changes at most 5 binary branches
o Delete changes at most 5 binary branches

@ Each edit operation changes at most 5 binary branches, thus

Ibb(T1, T2) <5 X 6¢(T1, T2).

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 22/43

pg-Grams

- pg-Grams

@ The shape of a pg-gram (p=2, g=3):
[}
\]stem

[]
T
° e e anchor node

base
@ p nodes (anchor node and p—1 ancestors) form the stem

@ g nodes (g consecutive children of the anchor node) form the base

WS 2025/26

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

pg-Grams

pg-Extended Tree

@ Problem: How can we split the following tree T into 2, 3-grams?
a
b c
d e

@ Solution: Extend tree T with dummy nodes (e):

o p—1 ancestors to the root node
o g—1 children before the first and after the last child of each non-leaf
e g children for each leaf

@ The result is the pg-extened tree TF9,

Similarity Search WS 2025/26

Augsten (Univ. Salzburg)

pg-Grams

- Example: Extended Tree

@ An example tree T and its extended tree TP9 (p=2, g=3):

T 2, 3-extended tree T23
a °
/ N\ \
b ¢ a
d/ \e ° ob/ \co °
/I 7 XX
oo o0 o0 ceo e
/1IN /IN

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

pg-Grams ‘

| Definition: pg-Gram [ABGOS]

Definition (pg-Gram)

Let T be a tree, TP9 the respective extended tree, p >0, g > 0. A
subtree of TP 9 is a pg-gram g of T iff

(a) g has g leaf nodes and p non-leaf nodes,

(b) all leaf nodes of g are children of a single node a € N(g) with fanout
q, called the anchor node,

(c) the leaf nodes of g are consecutive siblings in TP9.

.

@ Stem: anchor node and its ancestors in the pg-gram.

@ Base: children of the anchor node in the pg-gram.

Definition (pg-Gram Profile)

The pg-gram profile, P, of a tree T is the set of all its pg-grams.

Similarity Search WS 2025/26

Augsten (Univ. Salzburg)

pg-Grams ‘

 Example: Systematically Split Tree

@ pg-Gram: small subtree with stem and base

o
Example: p=2,g=3 | |stem
o
@ Systematically split tree into pg-grams o T
] ° ° anchor node
@ pg-Gram profile: set of all pg-grams of a tree.
base

* * * * *

\ | \ \ |

P(T) a a a a a

JINGZIN NN /N
**%a xap apc bcC* C* x

stem a a a a a

| | | \ \

a a a a e

JINGZIN O IN N /N
k€ x ep e px*x px*k x kk

b C a a a
| |
‘ b b c
E VAR VAR /1\
.>‘< u * % k% k x ok x %

base

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

pg-Grams

 Label Tuples

@ Linear encoding of a pg-gram g with anchor node v,:
(traverse pg-gram in preorder)
Vi
\

Vp =(v1,.. -3 Vptq)

e N
Vp+l + -+ Vpigq

-s Vps Vpt1, .-

@ Label tuple: tuple of the pg-gram’s node labels

Ag) = (A(v1) s)‘(Vp+q))

for the pg-gram g = (v1,...,Vpiq)-

Augsten (Univ. Salzburg)

Similarity Search WS 2025/26

pg-Grams

- pg-Gram Index

Definition (pg-Gram Index)

Let T be a tree with profile P+, p>0, g>0. The pg-gram index, Z, of
tree T is the bag of all label tuples of T,

(T) = |4 AMe)

gePr

@ Note:

e pg-grams are unique within a tree
e but: different pg-grams may vyield identical label tuples
e thus the pg-gram index may contain duplicates

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

pg-Grams

- Size of the pg-Gram Index

Theorem (Size of the pg-Gram Index)

Let T be a tree of size n = [+ i with | leaves and i non-leaves. The size of
the pg-gram index of T is linear in the tree size:

|ZP9(T)| =21+ qi — 1= O(n)

1. We count all pg-grams whose leftmost leaf is a dummy node: Each
leaf is the anchor node of exactly one pg-gram whose leftmost leaf is a
dummy node, giving | pg-grams. Each non-leaf is the anchor of g — 1
pg-grams whose leftmost leaf is a dummy, giving i(g — 1) pg-grams.

2. We count all pg-grams whose leftmost leaf is not a dummy node:
Each node of the tree except the root is the leftmost leaf of exactly
one pg-gram, giving [+ i — 1 pg-grams.

Overall number of pg-grams: I +i(q—1)+(/+i—1)=2/+4qi — 1. D)

Augsten (Univ. Salzburg)

Similarity Search WS 2025/26

pg-Grams

' The pg-Gram Distance

Definition (pg-Gram Distance)

The pg-gram distance between two trees, T and T’, is defined as

0g(T, T') = |Z(T) W Z(T)| - 2|Z(T) A Z(T)]

0g(T,T)
T)WIZ(T)|-[Z(T)mZ(T’)]

@ Pseudo-metric properties hold for normalization [ABG10]:
self-identity: x = y+ = d4(x,y) =0
symmetry: 0g(x,y) = dg(y, x)
triangle inequality: 0g(x,z) < dg(x,y) + 0g(y, 2)

@ Metric normalization to [0..1]: dg(T, T') = i

a a
/ \ / \
b b b b
| |
o Different trees may have identical indexes: € ¢
Augsten (Univ. Salzburg) Similarity Search WS 2025/26

32/43

pg-Grams

pg-Grams
Motivation: Unit Cost Model Not Always Intuitive - Fanout Weighted Tree Edit Distance
3 3 2 Definition (Fanout Weighted Tree Edit Distance)
0 =2 0 =2 .

/\ — /\ ¢ ///‘\\\ Let T and T’ be two trees, w € N(T) a node with fanout f, w' € N(T’) a
bc b c bdhikf8 node with fanout f/, ¢ > 0 a constant. The fanout weighted tree edit
/‘\ // N\ distance, 0f = (T, T’), between T and T’ is defined as the tree edit
def def 8§ distance with the following costs for the edit operations:

/ /1N @ Delete: a(w —¢€)=f+c
hoi hik o
Uni gt d o Insert: a(e > w')="f"+c
t t t dist :
@ it cos: edit distance @ Rename: a(w —w') = (f +f')/2+ ¢

e no difference between leaves and non-leaves
e may lead to non-intuitive results

Cost of changing a non-leaf node: proportional to its fanout.

@ Conclusion: Non-leaves should have more weight than leaves.

Cost of changing a leaf node: constant c.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

pg-Grams pg-Grams ‘
Example: Fanout-Weighted Tree Edit Distance pg-Gram Distance Lower Bound

o Fanout-Weighted Tree Edit Distance Theorem

o leaf changes have small cost (c = 1 in the example) Let p=1 and ¢ > max(2q — 1,2) be the cost of changing a leaf node.
° non—iseaf_cganges cost proportional t50 tie;Ode fanout The pg-gram distance provides a lower bound for the fanout weighted tree
a 5t B 5 a (; o 9 a edit distance, i.e., for any two trees, T and T,
f= f=
o= N i,
"\ N panikre e <ar),
def defég
h i hik See [ABG10] (ACM Transactions on Database Systems). O

Augsten (Univ. Salzburg) Similarity Search WS 2025/26 Augsten (Univ. Salzburg) Similarity Search WS 2025/26

pg-Grams

Size of the pg-Gram Index

pg-Grams

Sensitivity to Structure Change — Leaf

@ pg-Gram index size: linear in the tree size
@ Experiment:

e compute pg-gram index for trees with different number of nodes
o compare tree and index size

1200
tree —+—
1000 3,3-gram index -
1,2-gram index -

Why is the pg-gram index smaller

g ™ than the tree?

2 600

5 @ hash values are smaller than

200 — labels
e) «
0 ¥ * . _
0 1e+07 2e+07 @ duplicate pg-grams of a tree are
number of nodes StOI’ed Only once

[Trees created with xmlgen.]

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

pg-Grams

@ Cost of leaf change — depends only on g
@ Experiment:

o delete leaf nodes
e measure normalized pg-gram distance

vary p vary q
! 4,3-gi'amé — ‘ ‘ ‘ ‘ ! 2,4-g?amé —
8 3,3-grams - 3 2,3-grams -
S 08 23-grams —x S 08r 22grams -x
o 1,3-grams = ° 2,1-grams -&
© o
g 067 c 06
o g
(o2}
D 047 2 045
Q Q %
£ £ ¥
5 02¢ s 027 L
= c
0 B 0 o B
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

number of deletions number of deletions

(Artificial tree with 144 nodes, 102 leaves, fanout 2—6 and depth 6. Average over 100 runs.)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

pg-Grams

Sensitivity to Structure Change — Non-Leaf

@ Cost for non-leaf change — controlled by p
@ Experiment:

o delete non-leaf nodes
e measure normalized pg-gram distance

vary p

1 1
[0} @
g 08 | § 08 |
R k7]
© ©
c 06 e 06
8 8
(o]
2 045 2 045
o o
£ £
£ 02 £ 02
c =

0 0

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

number of deletions number of deletions
(Artificial tree with 144 nodes, 102 leaves, fanout 2—6 and depth 6. Average over 100 runs.)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Influence of p and g on Scalability

@ Scalability (almost) independent of p and gq.
@ Experiment: For pair of trees

e compute pg-gram distance for varying p and q
o vary tree size: up 10° nodes
e measure wall clock time

25 T - T T T T
3,4-gram dist —+—
2,3-gram dist - £
1,2-gram dist - g
20 r 1
o156 R
Q
2,
()
Ewof]
5 L 4
0
0 100000 200000 300000 400000 500000

number of nodes (n)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

pg-Grams

- Scalability to Large Trees

@ pg-gram distance — scalable to large trees

@ compare with edit distance
@ Experiment: For pair of trees

e compute tree edit distance and pg-gram distance
e vary tree size: up 5 x 10° nodes
e measure wall clock time

600 ‘ - ‘
edit dist ———
2,3-gram dist -
500
400
ey
3
. 300
£
200 >x
100
Y I ‘ | | |
(0] 100000 200000 300000 400000 500000

number of nodes (n)

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

Conclusion

- Summary

@ Binary Branch Distance

lower bound of the unit cost tree edit distance

trees are split into binary branches (small subgraphs)
similar trees have many common binary branches
complexity O(nlog n) time and (n) space

@ pg-Gram Distance

lower bound for the fanout weighted tree edit distance
trees are split into pg-grams (small subtrees)

similar trees have many common pg-grams
complexity O(nlog n) time and O(n) space

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

pg-Grams

pq-Grams vs. other Edit Distance Approximations

Effectiveness: pg-grams outperform all other approximations I

Experiment: two sets of address trees (299 and 302 trees)

@ compute distances between all tree pairs

@ find matches (symmetric nearest neighbor)

Distance ‘ Correct Recall Precision f-Measure Runtime
fanout edit dist 259 86.6% 98.5% 0.922 19 min
unit edit dist 247 82.6% 96.5% 0.890 14 min
node intersection 197 65.9% 93.8% 0.774 4.3s
p,q-grams 236 78.9% 98.7% 0.877 8.1s
tree-embedding 206 68.9% 96.3% 0.803 7.1s
binary branch 193 64.5% 93.2% 0.763 7.4s
bottom-up 148 49.6% 92.5% 0.645 67.0s
Augsten (Univ. Salzburg) Similarity Search WS 2025/26 42 /43

[Nikolaus Augsten, Michael Bohlen, and Johann Gamper.
Approximate matching of hierarchical data using pg-grams.
In Proceedings of the International Conference on Very Large
Databases (VLDB), pages 301-312, Trondheim, Norway, September
2005. ACM Press.

[Nikolaus Augsten, Michael Bohlen, and Johann Gamper.
The pg-gram distance between ordered labeled trees.
ACM Transactions on Database Systems (TODS), 35(1):1-36, 2010.

[@ Richard M. Karp and Michael O. Rabin.
Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249-260, March
1987.

[d Rui Yang, Panos Kalnis, and Anthony K. H. Tung.
Similarity evaluation on tree-structured data.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 754—765, Baltimore, Maryland, USA,
June 2005. ACM Press.

Augsten (Univ. Salzburg) Similarity Search WS 2025/26

